The Mauthner (M) cell is a critical element in a vital escape "reflex" triggered by abrupt or threatening events. Its properties at the molecular and synaptic levels, their various forms of plasticity, and the design of its networks, are all well adapted for this survival function. They guarantee that this behavior is appropriately unilateral, variable, and unpredictable. The M cell sets the behavioral threshold, and, acting in concert with other elements of the brainstem escape network, determines when, where, and how the escape is executed.
The classical coefficient of variation method for "quantal" analysis of synaptic responses allows unambiguous identification of pre- and postsynaptic loci underlying synaptic plasticity only when extensive simplifying restrictions are made. They include invariance of quantal parameters and the assumption that a single afferent produces the evoked potentials or currents. More general theoretical formulations and simulations demonstrate that the standard criteria do not always provide useful guidelines because when the other sources of physiological variance are included, putative pre- and postsynaptic domains may overlap. For example, data typically interpreted as indicating modifications at both sites can be due to a mechanism localized to only one of the two, if parameter variances are taken into consideration in the case of a single input cell, or if there are multiple inputs and the stimulus does not activate all of them reliably. With this perspective, other physiologically realistic hypotheses relevant to the expression of synaptic plasticity, such as that during long-term potentiation, can be envisioned.
Although behavior is ultimately guided by decision-making neurons and their associated networks, the mechanisms underlying neural decision-making in a behaviorally relevant context remain mostly elusive. To address this question, we analyzed goldfish escapes in response to distinct visual looming stimuli with high-speed video and compared them with electrophysiological responses of the Mauthner cell (M-cell), the threshold detector that initiates such behaviors. These looming stimuli evoke powerful and fast body-bend (C-start) escapes with response probabilities between 0.7 and 0.91 and mean latencies ranging from 142 to 716 ms. Chronic recordings showed that these C-starts are correlated with M-cell activity. Analysis of response latency as a function of the different optical parameters characterizing the stimuli suggests response threshold is closely correlated to a dynamically scaled function of angular retinal image size, (t), specifically (t) ϭ (t Ϫ ␦ ϫ e Ϫ  (t Ϫ ␦) , where the exponential term progressively reduces the weight of (t). Intracellular recordings show that looming stimuli typically evoked bursts of graded EPSPs with peak amplitudes up to 9 mV in the M-cell. The proposed scaling function (t) predicts the slope of the depolarizing envelope of these EPSPs and the timing of the largest peak. An analysis of the firing rate of presynaptic inhibitory interneurons suggests the timing of the EPSP peak is shaped by an interaction of excitatory and inhibitory inputs to the M-cell and corresponds to the temporal window in which the probabilistic decision of whether or not to escape is reached.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.