Big Data Analytics is an emerging field since massive storage and computing capabilities have been made available by advanced e-infrastructures. Earth and Environmental sciences are likely to benefit from Big Data Analytics techniques supporting the processing of the large number of Earth Observation datasets currently acquired and generated through observations and simulations. However, Earth Science data and applications present specificities in terms of relevance of the geospatial information, wide heterogeneity of data models and formats, and complexity of processing. Therefore, Big Earth Data Analytics requires specifically tailored techniques and tools. The EarthServer Big Earth Data Analytics engine offers a solution for coverage-type datasets, built around a high performance array database technology, and the adoption and enhancement of standards for service interaction (OGC WCS and WCPS). The EarthServer solution, led by the collection of requirements from scientific communities and international initiatives, provides a holistic approach that ranges from query languages and scalability up to mobile access and visualization. The result is demonstrated and validated through the development of lighthouse applications in the Marine, Geology, Atmospheric, Planetary and Cryospheric science domains.
The use of small Unmanned Aircraft Systems (sUAS) as platforms for data capture has rapidly increased in recent years. However, while there has been significant investment in improving the aircraft, sensors, operations, and legislation infrastructure for such, little attention has been paid to supporting the management of the complex data capture pipeline sUAS involve. This paper reports on a four-year, community-based investigation into the tools, data practices, and challenges that currently exist for particularly researchers using sUAS as data capture platforms. The key results of this effort are: (1) sUAS captured data—as a set that is rapidly growing to include data in a wide range of Physical and Environmental Sciences, Engineering Disciplines, and many civil and commercial use cases—is characterized as both sharing many traits with traditional remote sensing data and also as exhibiting—as common across the spectrum of disciplines and use cases—novel characteristics that require novel data support infrastructure; and (2), given this characterization of sUAS data and its potential value in the identified wide variety of use case, we outline eight challenges that need to be addressed in order for the full value of sUAS captured data to be realized. We conclude that there would be significant value gained and costs saved across both commercial and academic sectors if the global sUAS user and data management communities were to address these challenges in the immediate to near future, so as to extract the maximal value of sUAS captured data for the lowest long-term effort and monetary cost.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.