At sites of ongoing inflammation, polymorphonuclear leukocytes (PMN, neutrophils) migrate across vascular endothelia, and such transmigration has the potential to disturb barrier properties and can result in intravascular fluid loss and edema. It was recently appreciated that endogenous pathways exist to dampen barrier disruption during such episodes and may provide an important anti-inflammatory link. For example, during transmigration, PMN-derived adenosine activates endothelial adenosine receptors and induces a cAMP-dependent resealing of endothelial barrier function. In our study reported here, we sought to understand the link between cyclic nucleotide elevation and increased endothelial barrier function. Initial studies revealed that adenosine-induced barrier function is tightly linked to activation of protein kinase A (PKA). Because PKA selectively phosphorylates serine and threonine residues, we screened zonula occludens-1 (ZO-1) immunoprecipitates for the existence of such phosphorylated proteins as targets for barrier regulation. This analysis revealed a dominantly phosphorylated band at 50 kDa. Microsequencing identified this protein as vasodilator-stimulated phosphoprotein (VASP), an actin binding protein with multiple serine/threonine phosphorylation sites. Immunofluorescent microscopy revealed that VASP localizes to endothelial junctional complexes and colocalizes with ZO-1, occludin, and junctional adhesion molecule-1 (JAM-1). To address the role of phospho-VASP in regulation of barrier function, we generated a phosphospecific VASP antibody targeting the Ser157 residue phosphorylation site, the site preferred by PKA. Immunolocalization studies with this antibody revealed that upon PKA activation, phospho-VASP appears at cell-cell junctions. Transient transfection of truncated VASP fragments revealed a parallel increase in barrier function. Taken together, these studies reveal a central role for phospho-VASP in the coordination of PKA-regulated barrier function, such as occurs during episodes of inflammation. E ndothelial cells that line blood vessels are the primary determinants of vascular permeability [1], and structural and functional integrity of the endothelium is crucial in determining overall vascular permeability. Endothelial injury, such as occurs during leukocyte-endothelial interactions, may result in increased paracellular permeability, decreased barrier function, and subsequent intravascular loss of fluid and local tissue edema [2,3]. During transendothelial migration (TEM), polymorphonuclear leukocyte (PMN)-derived adenosine activates endothelial adenosine receptors and induces a cAMP-dependent sealing of endothelial monolayers [4,5]. Elevated levels of cAMP could enhance barrier function by activating protein kinase A (PKA) and subsequent phosphorylation of key complex-associated proteins [6,7]. At present, the intracellular signals that link cAMP elevation and vascular barrier function have not been identified.Regulation of junctional permeability is coupled to actin-based systems, a...
Neutrophil migration across mucosal epithelium during inflammatory episodes involves the precise orchestration of a number a cell surface molecules and signaling pathways. After successful migration to the apical epithelial surface, apically localized epithelial proteins may serve to retain PMN at the lumenal surface. At present, identification of apical epithelial ligands and their PMN counter-receptors remain elusive. Therefore, to define the existence of apical epithelial cell surface proteins involved in PMN–epithelial interactions, we screened a panel of antibodies directed against epithelial plasma membranes. This strategy identified one antibody (OE-1) that both localized to the apical cell membrane and significantly inhibited PMN transmigration across epithelial monolayers. Microsequence analysis revealed that OE-1 recognized human decay-accelerating factor (DAF, CD55). DAF is a highly glycosylated, 70–80-kD, glycosyl-phosphatidyinositol–linked protein that functions predominantly as an inhibitor of autologous complement lysis. DAF suppression experiments using antisense oligonucleotides or RNA interference revealed that DAF may function as an antiadhesive molecule promoting the release of PMN from the lumenal surface after transmigration. Similarly, peptides corresponding to the antigen recognition domain of OE-1 resulted in accumulation of PMN on the apical epithelial surface. The elucidation of DAF as an apical epithelial ligand for PMN provides a target for novel anti-inflammatory therapies directed at quelling unwanted inflammatory episodes.
Epithelial permeability is tightly regulated by intracellular messengers. Critical to maintaining barrier integrity is the formation of tight junction complexes. A number of signaling pathways have been implicated in tight junction biogenesis; however, the precise molecular mechanisms are not fully understood. A growing body of evidence suggests a role for intracellular cAMP in tight junction assembly. Using an epithelial model, we investigated the role of cAMP signal transduction in barrier recovery after Ca2+ switch. Our data demonstrate that elevation of intracellular cAMP levels significantly enhanced barrier recovery after Ca2+ switch. Parallel experiments revealed that epithelial barrier recovery is diminished by H-89, a specific and potent inhibitor of cAMP-dependent protein kinase (protein kinase A) activity. Of the possible PKA effector proteins, the vasodilator-stimulated phosphoprotein (VASP) is an attractive candidate, since it has been implicated in actin-binding and cross-linking functions. We therefore hypothesized that VASP may play a role in the cAMP-mediated regulation of epithelial junctional reassembly after Ca2+ switch. We demonstrate here that VASP is phosphorylated via a PKA-dependent process under conditions that enhance barrier recovery. Confocal laser scanning microscopy studies revealed that VASP localizes with ZO-1 at the tight junction and at cell-cell borders and that phospho-VASP appears at the junction after Ca2+ switch. Subsequent transfection studies utilizing epithelial cells expressing truncated forms of VASP abnormal in oligomerization or actin-binding activity revealed a functional diminution of barrier recovery after Ca2+ chelation. Our present studies suggest that VASP may provide a link between cAMP signal transduction and epithelial permeability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.