During the past decade, intense experimental studies on the heavy-ion induced molecular desorption were performed in several particle accelerator laboratories worldwide in order to understand and overcome large dynamic pressure rises caused by lost beam ions. Different target materials and various coatings were studied for desorption and mitigation techniques were applied to heavy-ion accelerators. For the upgrade of the CERN injector complex, a coating of the Super Proton Synchrotron (SPS) vacuum system with a thin film of amorphous carbon is under study to mitigate the electron cloud effect observed during SPS operation with the nominal proton beam for the Large Hadron Collider (LHC). Since the SPS is also part of the heavy-ion injector chain for LHC, dynamic vacuum studies of amorphous carbon films are important to determine their ion induced desorption yields. At the CERN Heavy Ion Accelerator (LINAC 3), carbon-coated accelerator-type stainless steel vacuum chambers were tested for desorption using 4:2 MeV=u Pb 54þ ions. We describe the experimental setup and method, present the results for unbaked and baked films, and summarize surface characterizations such as secondary electron yield measurements, x-ray photoemission spectroscopy, and scanning electron microscopy studies. Finally, we present a high-energy scaling of lead-ion induced desorption yields from the MeV=u to GeV=u range.
Heavy-ion-induced desorption of two different cryogenic targets was studied with a new experimental setup installed at the GSI High Charge State Injector. One gold-coated and one amorphous-carbon-coated copper target, bombarded under perpendicular impact with 1:4 MeV=u Xe 18þ ions, were tested. Partial pressure rises of H 2 , CO, CO 2 , and CH 4 and effective desorption yields were measured at 300, 77, and 8 K using continuous heavy-ion bombardment. We found that the desorption yields decrease with decreasing target temperature and measured the yield rises as a function of CO gas cryosorbed at 8 K. In this paper we describe the experimental system comprising a new cryogenic target assembly, the preparation of the targets, the test procedure, and the evaluation of the effective pumping speed of the setup. Pressure rise and gas adsorption experiments are described; the obtained results are discussed and compared with literature data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.