The overall objective of this study is to provide an improved basis for the assessment of the leaching behaviour of waste marked as hazardous partly stabilised (European waste catalogue code 19 03 04). Four samples of hazardous partly stabilised waste were subjected to two leaching tests: up-flow column tests and batch equilibrium tests. The research was carried out in two directions: the first aims at comparing the results of the two experimental setups while the second aims at assessing the impact of different ambient conditions on the leaching behaviour of waste. Concerning this latter objective the effect of mesophilic temperature, mechanical constraints and acid environment were tested through column percolation tests. Results showed no significant differences between batch and column leaching test outcomes when comparing average concentrations calculated at a liquid to solid ratio of 10:1 l kg TS. Among the tested ambient conditions, the presence of an acid environment (pH=4.5) accelerated the leaching process resulting in a higher cumulative released quantity measured on the majority of the investigated polluting substances. On the contrary, the effect of temperature and mechanical constraints seemed to not affect the process showing final contents even lower than values found for the standard test. This result was furthermore confirmed by the application of the principal component analysis.
Two pilot-scale tests were carried out to assess if biodrying could be an effective process for the treatment of light fraction produced by an hydromechanical pre-treatment in an anaerobic digestion plant. The trials were performed using two pilot-scale stainless steel cylindrical reactors of 750 L capacity. Two tests were performed: in Test 1, only the light fraction was used; in Test 2, the light fraction was mixed with a bulking agent composed of garden and pruning waste. In Test 2, the highest temperature (71 °C) in a short time (8 days) was reached. An average water content reduction of 78% in Test 1 and 61% in Test 2 was measured, leading to similar reductions of weight (47–48%) and volume (27–29%). A high biological stability was measured on the final light fraction samples collected from both the tests. Furthermore, the lower heating value obtained after the biodrying treatment complies with the quality specification of the European standard on refuse-derived fuels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.