Malonaldehyde (malondialdehyde, MDA) was reacted with 2'-deoxyadenosine in buffered aqueous solution. HPLC analyses of the reaction mixtures showed that, besides the two previously characterized N6-propenal (M1dA) and N6-oxazocinyl (M3dA) adenine adducts, a third compound eluting at longer retention time was formed. The compound generated a strong peak in the chromatogram recorded by a fluorescence detector. The new compound was isolated by preparative C18 chromatography, and its structure was characterized by UV absorbance, fluorescence emission, 1H and 13C NMR spectroscopy, and mass spectrometry. The product was identified as 9-(2'-deoxyribosyl)-6-(3,5-diformyl-4-methyl-1, 4-dihydro-1-pyridyl)purine (M2AA-dA). The yield of the product was 0.8% following 7 days of reaction at 37 degreesC and pH 4.6. Lower yields were obtained at higher pH conditions. By the addition of acetaldehyde, the yield increased about 10-fold at all studied pH conditions. The adduct was most likely formed by an initial condensation of two molecules of malonaldehyde with one molecule of acetaldehyde followed by reaction of the condensation product with the exocyclic amino group of 2'-deoxyadenosine. The identification of this adduct shows that acetaldehyde may react with DNA bases also through an initially formed malonaldehyde-acetaldehyde condensation product.
2'-Deoxyadenosine was reacted with malonaldehyde in the presence of formaldehyde or acetaldehyde. The reactions were carried out at 37 degrees C in aqueous solution at acidic conditions. The reaction mixtures were analyzed by HPLC. In both reactions, two major products were formed. The reaction products were isolated and purified by C18 chromatography, and their structures were characterized by UV absorbance, fluorescence emission, (1)H and (13)C NMR spectroscopy, and mass spectrometry. The reaction products isolated from the mixture containing formaldehyde, malonaldehyde, and deoxyadenosine were identified as 3-(2'-deoxy-beta-D-ribofuranosyl)-7H-8-formyl[2,1-i]pyrimidopurine (M(1)FA-dA) and 9-(2'-deoxy-beta-D-ribofuranosyl)-6-(3,5-diformyl-1, 4-dihydro-1-pyridyl)purine (M(2)FA-dA). In the reaction mixture consisting of acetaldehyde, malonaldehyde, and deoxyadenosine, the identities of the products were determined to be 3-(2'-deoxy-beta-D-ribofuranosyl)-7-methyl-8-formyl[2, 1-i]pyrimidopurine (M(1)AA-dA) and 9-(2'-deoxy-beta-D-ribofuranosyl)-6-(3,5-diformyl-4-methyl-1, 4-dihydro-1-pyridyl)purine (M(2)AA-dA). The yields of the compounds were 1.8 and 0.7% for M(1)FA-dA and M(2)FA-dA, respectively, and 6.8 and 10% for M(1)AA-dA and M(2)AA-dA, respectively. All compounds exhibited marked fluorescent properties. These findings show that in addition to direct reaction of a specific aldehyde with 2'-deoxyadenosine, aldehyde conjugates also may react with the base. Although three of the adducts (M(1)FA-dA, M(2)FA-dA, and M(1)AA-dA) could not be detected in reactions carried out under neutral conditions, the possibility that trace amounts of the adducts may be formed under physiological conditions cannot be ruled out. Therefore, conjugate adducts must be considered in work that aims at clarifying the mechanism of aldehyde genotoxicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.