The tyrosine kinase Src is frequently activated in advanced human prostate carcinomas and its activation correlates with tyrosine phosphorylation of the RNAbinding protein Sam68. Herein, we have investigated the expression and function of Sam68 in human prostate cancer cells. Analysis of specimens obtained from 20 patients revealed that Sam68 is upregulated at the protein level in 35% of the samples. Real-time polymerase chain reaction confirmed the results at the mRNA level in most patients. Downregulation of Sam68 by RNAi in LNCaP prostate cancer cells delayed cell cycle progression and reduced the proliferation rate. Moreover, depletion of Sam68 sensitized cells to apoptosis induced by DNAdamaging agents. Similarly, stable cell lines expressing a truncated GFP-Sam68 GSG protein displayed reduced growth rates and higher sensitivity to cisplatin-induced apoptosis. Microarray analyses revealed that a subset of genes involved in proliferation and apoptosis were altered when Sam68 was knocked down in LNCaP cells. Our results indicate that Sam68 expression supports prostate cancer cells proliferation and survival to cytotoxic agents.
It is known that mammalian primordial germ cells (PGCs), the precursors of oocytes and prospermatogonia, depend for survival and proliferation on specific growth factors and other undetermined compounds. Adhesion to neighboring somatic cells is also believed to be crucial for preventing PGC apoptosis occurring when they lose appropriate cell to cell contacts. This explains the current impossibility to maintain isolated mouse PGCs in culture for periods longer than a few hours in the absence of suitable cell feeder layers producing soluble factors and expressing surface molecules necessary for preventing PGTC apoptosis and stimulating their proliferation. In the present paper, we identified a cocktail of soluble growth factors, namely KL, LIF, BMP-4, SDF-1, bFGF and compounds (N-acetyl-L-cysteine, forskolin, retinoic acid) able to sustain the survival and self-renewal of mouse PGCs in the absence of somatic cell support. We show that under culture conditions allowing PGC adhesion to an acellular substrate, such growth factors and compounds were able to prevent the occurrence of significant levels of apoptosis in PGCs for two days, stimulate their proliferation and, when LIF was omitted from the cocktail, allow most of them to enter into and progress through meiotic prophase I. These results consent for the first time to establish culture conditions for purified mammalian PGCs in the absence of somatic cell support and should make easier the molecular dissection of the processes governing the development of such cells crucial for early gametogenesis.
Stra8 (stimulated by retinoic acid 8) encodes a protein crucial for mammalian germ cells entering into premeiotic stages. Here, to elucidate the still unknown STRA8 molecular functions, we studied the cellular localization of the protein in several cell types, including premeiotic mouse germ cells and stem cell lines. We reported distinct STRA8 localization in germ and stem cell types and a heterogeneous protein distribution in the cytoplasm and nucleus of such cells suggesting that the protein can shuttle between these two compartments. Moreover, we identified specific protein motifs determining its nuclear import/export. Furthermore, we demonstrated that in transfected cell lines the nuclear import of STRA8 is an active process depending on an N-terminal basic nuclear localization signal. Moreover, its nuclear export is mainly mediated by the Exportin1 (XPO1) recognition of a nuclear export signal. Significantly, we also demonstrated that STRA8 associates with DNA and possesses transcriptional activity. These observations strongly suggest that STRA8 can exert important functions in the nucleus rather than in the cytoplasm as believed previously, likely depending on the cell type and regulated by its nuclear-cytoplasmic shuttling.
We have studied the presence and distribution of beta 1 integrins in the seminiferous epithelium of prepubertal and adult rats. Our immunofluorescence data show that in the adult the antibody recognizes specific areas localized around the heads of elongating and maturing spermatids and above spermatogonia at stages I-VII. The following were found to be negative: a) areas adjacent to spermatogonia at stages IX-XIV and adjacent to spermatocytes and to round spermatids; b) spermiated spermatozoa. In the prepubertal rat, positive tubules are first apparent around Day 17 of age. Immunofluorescence and immunoprecipitation studies show that Sertoli cell monolayers from 3-wk-old rats express beta integrins in vitro.
Strict control of cell proliferation and cell loss is essential for the coordinated functions of different cell populations in complex multicellular organisms. Oogenesis is characterized by a first phase occurring during embryo-fetal life and in common with spermatogenesis, during which mitotic proliferation of the germline stem cells, the primordial germ cells (PGC), prevails over germ cell death. The result is the formation of a relatively high number of germ cells depending on the species, ready to enter sex specific differentiation. In the female, PGC enter into meiosis and become oocytes, thereby ending their stem cell potential. After entering into meiosis in the fetal ovary, oocytes pass through leptotene, zygotene and pachytene stages before arresting in the last stage of meiotic prophase I, the diplotene or dictyate stage at about the time of birth. The most part of oocytes die during the fetal period or shortly after birth. It is widely accepted that in mammals a female is born with a fixed number of oocytes within the ovaries, which over the years progressively decreases without possibility for renewal. Once the oocyte reserve has been exhausted, ovarian senescence, driving what is referred to as the menopause in women, rapidly ensues. The fertile lifespan of a female depends by the size of the oocyte pool at birth and the rapidity of the oocyte pool depletion. Which mechanisms control PGC proliferation? Why do most of the oocytes die during fetal life and what are the mechanisms of such massive degeneration? Is it possible to prolong the lifespan of a female by reducing oocyte lost during the fetal life? This review reports some of the most recent results obtained in an attempt to answer these questions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.