Enterohemorrhagic Escherichia coli (EHEC) O157:H7 subverts host cells through a type III secretion system encoded by the locus for enterocyte effacement (LEE). Genome sequencing of this pathotype revealed the existence of a gene cluster encoding components of a second cryptic type III secretion system, E. coli type III secretion system 2 (ETT2). Recently, we showed that the ETT2 gene cluster is present in whole or in part in the majority of E. coli strains but is unable to encode a functional secretion system in most strains, including EHEC O157:H7. However, here we show that mutational inhibition of two regulatory genes (ECs3720 or etrA and ECs3734 or eivF) from the ETT2 cluster in EHEC O157:H7 leads to greatly increased secretion of proteins encoded by the LEE and to increased adhesion to human intestinal cells. Studies in which transcriptional fusions and microarrays were used indicated that EtrA and EivF exert profound negative effects on gene transcription within the LEE. Consistent with these observations, expression of these regulators in an EHEC O26:H-strain led to suppression of protein secretion under LEE-inducing conditions. These findings provide fresh examples of the influence of mobile genetic elements on regulation of the LEE and of cross talk between type III secretion system gene clusters. In addition, they provide a cautionary tale because they show that the effects of regulatory genes can outlive widespread decay of other genes in a functionally coherent gene cluster, a phenomenon that we have named the "Cheshire cat effect." It also seems likely that variations in the ETT2 regulator repertoire might account for strain-to-strain variation in secretion of LEE-encoded proteins.
Production of lactate even in the presence of sufficient levels of oxygen (aerobic glycolysis) seems the prevalent energy metabolism pathway in cancer cells. The analysis of altered expression of effectors causing redirection of glucose metabolism would help to characterize this phenomenon with possible therapeutic implications. We analyzed mRNA expression of the key enzymes involved in aerobic glycolysis in normal mucosa (NM), primary tumor (PT) and liver metastasis (LM) of colorectal cancer (CRC) patients (pts) who underwent primary tumor surgery and liver metastasectomy. Tissues of 48 CRC pts were analyzed by RT-qPCR for mRNA expression of the following genes: hexokinase-1 (HK-1) and 2 (HK-2), embryonic pyruvate kinase (PKM-2), lactate dehydrogenase-A (LDH-A), glucose transporter-1 (GLUT-1), voltage-dependent anion-selective channel protein-1 (VDAC-1). Differences in the expression of the candidate genes between tissues and associations with clinical/pathologic features were studied. GLUT-1, LDH-A, HK-1, PKM-2 and VDAC-1 mRNA expression levels were significantly higher in PT/LM tissues compared with NM. There was a trend for higher expression of these genes in LM compared with PT tissues, but differences were statistically significant for LDH-A expression only. RAS mutation-positive disease was associated with high GLUT-1 mRNA expression levels only. Right-sided colon tumors showed significantly higher GLUT-1, PKM-2 and LDH-A mRNA expression levels. High glycolytic profile was significantly associated with poor prognosis in 20 metastatic, RAS-mutated pts treated with first-line chemotherapy plus Bevacizumab. Altered expression of effectors associated with upregulated glucose uptake and aerobic glycolysis occurs in CRC tissues. Additional analyses are warranted for addressing the role of these changes in anti-angiogenic resistance and for developing novel therapeutics.
Despite the fact that patients in hospice were in the terminal phase of disease, 30% of patients had no diagnosis awareness, and an even higher percentage of patients (62%) who had no prognosis awareness.
Background: There are interesting studies on glioma therapy with modulated electrohyperthermia (mEHT), which combines heat therapy with an electric field. Clinical researchers not only found the mEHT method feasible for palliation but also reported evidence of therapeutic response. Purpose: To study the efficacy and safety of mEHT for the treatment of relapsed malignant glioma and astrocytoma versus best supportive care (BSC). Methods: We collected data retrospectively on 149 patients affected by malignant glioma and astrocytoma. Inclusion criteria were informed consent signed; >18 years old; histological diagnosis of malignant glioma or astrocytoma; relapsed after surgery, adjuvant temozolomide-based chemotherapy, and radiotherapy; and indication for treatment with mEHT in palliative setting. mEHT was performed with capacitive coupling technique keeping the skin surface at 26°C and the tumor temperature at 40°C to 42.5°C for > 90% of treatment duration (20-60 minutes). The applied power was 40 to 150 W using a step-up heating protocol. Results from patients treated with mEHT were compared with those treated with BSC. Results: A total of 149 consecutive patients were enrolled in the study, 111 (74%) had glioblastoma multiforme (GBM), and 38 (26%) had astrocytoma (AST). mEHT was performed for 28 (25%) of GBM and 24 (63%) of AST patients. Tumor response at the 3-month follow-up was observed in 29% and 48% of GBM and AST patients after mEHT, and in 4% and 10% of GBM and AST patients after BSC, respectively. The survival rate at first and second year in the mEHT group was 77.3% and 40.9% for AST, and 61% and 29% for GBM, respectively. The 5-year overall survival of AST was 83% after mEHT versus 25% after BSC and 3.5% after mEHT versus 1.2% after BSC for GBM. The median overall survival of mEHT was 14 months (range 2-108 months) for GBM and 16.5 months (range 3-156 months) for the AST group. We observed 4 long-term survivors in the AST and 2 in the GBM group. Two of the long survivors in AST and 1 in GBM group were treated by mEHT. Conclusions: mEHT in integrative therapy may have a promising role in the treatment and palliation of relapsed GBM and AST.
Background: Pancreatic adenocarcinoma has a poor prognosis, resulting in a <10% survival rate at 5 years. Modulated electro-hyperthermia (mEHT) has been increasingly used for pancreatic cancer palliative care and therapy. Objective: To monitor the efficacy and safety of mEHT for the treatment of advanced pancreatic cancer. Methods: We collected data retrospectively on 106 patients affected by stage III-IV pancreatic adenocarcinoma. They were divided into 2 groups: patients who did not receive mEHT (no-mEHT) and patients who were treated with mEHT. We performed mEHT applying a power of 60 to 150 W for 40 to 90 minutes. The mEHT treatment was associated with chemotherapy and/or radiotherapy for 33 (84.6%) patients, whereas 6 (15.4%) patients received mEHT alone. The patients of the no-mEHT group received chemotherapy and/or radiotherapy in 55.2% of cases. Results: Median age of the sample was 65.3 years (range = 31-80 years). After 3 months of therapy, the mEHT group had partial response in 22/34 patients (64.7%), stable disease in 10/34 patients (29.4%), and progressive disease in 2/34 patients (8.3%). The no-mEHT group had partial response in 3/36 patients (8.3%), stable disease in 10/36 patients (27.8%), and progressive disease in 23/36 patients (34.3%). The median overall survival of the mEHT group was 18.0 months (range = 1.5-68.0 months) and 10.9 months (range = 0.4-55.4 months) for the non-mEHT group. Conclusions: mEHT may improve tumor response and survival of pancreatic cancer patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.