Over the years, aquaculture has shown increasing development in terms of production. However, due to intensive farming practices, infectious diseases represent the main problem in fish farms, causing heavy economic losses. The use of antibiotics for controlling diseases is widely criticized for its negative impact, including selection of antibioticresistant bacterial strains, immunosuppression, environmental pollution and accumulation of chemical residues in fish tissues. On the other hand, though vaccination is the most effective prophylactic method of preventing disease outbreaks, the development of effective formulations is often hindered by high production costs and the antigenic heterogeneity of the microbial strains. Recently, there has been increased interest in the possibility of using medicinal herbs as immunostimulants, capable of enhancing immune responses and disease resistance of cultured fish. Plant-derived products seem to represent a promising source of bioactive molecules, being at the same time readily available, inexpensive and biocompatible. The aim of this article is to provide an overview of recent research dealing with the use of medicinal plants in aquaculture. Special attention is given to the information about the effects of plant extracts/products on fish growth, haematological profiles, immune responses and resistance to infectious diseases.
The research was aimed to assess the effect of dietary carvacrol (0.025% and 0.05%) on sea bass (Dicentrarchus labrax) growth, immune response and resistance to Listonella anguillarum. Fish (69.2 ± 0.22 g) were fed the experimental diets for 9 weeks. Dietary carvacrol did not negatively affect fish survival, growth performance, feed intake and feed conversion ratio (P > 0.05) nor carcass yield and viscerosomatic, hepatosomatic and mesenteric fat index (P > 0.05). Serum and head kidney leucocytes were collected after 1, 4 and 8 weeks of feeding. Carvacrol significantly reduced serum proteins, immunoglobulins and lysozyme activity (P < 0.01) and moderately increased phagocytosis and pinocytosis of head kidney macrophages. The release of reactive oxygen species by leucocytes was reduced in carvacrol‐fed fish, even if significantly (P < 0.05) only in those fed 0.05% carvacrol for 1 week. Dietary carvacrol did not significantly affect the aspecific immune response, although a potential antioxidant activity might be speculated. Moreover, feeding carvacrol provided an appreciable resistance to a challenge with L. anguillarum, when a bacterial dose lower than the Lethal Dose50 was used. Cumulative mortality in fish fed 0.025% carvacrol was significantly lower than that of untreated controls (75% Relative Per cent Survival).
Red mark syndrome (RMS) and US strawberry disease (US SD) are skin disorders affecting rainbow trout farmed in Europe and USA. The disease etiology has not yet been established. In spite of specific investigations, identifying Rickettsia-like organism (RLO)- and Midichloria-like organism (MLO)-related DNA in affected individuals, these pathogens have never been observed. We performed histological, ultrastructural and biomolecular analysis on skin and spleen samples of trout with RMS. Examination by TEM revealed the presence of intracytoplasmic microorganisms resembling Rickettsiales within macrophages, fibroblasts and erythrocytes. The microorganisms were oval or short rod shaped (400-800 nm in length and 100-200 nm in width) and often showed a cell wall similar to Gram-negative bacteria. PCR analysis for Rickettsiales supported these findings: 53% of affected trout were positive by both PCR and TEM The primers RiFCfw-RiFCrev were used to anneal both the RLO 16S DNA sequence and the MLO 16S DNA sequence. For this reason, and in agreement with previous studies confirming the presence of Rickettsiales-related DNA in trout with RMS, we assume that TEM detected microorganisms morphologically consistent with bacteria belonging to Rickettsiales order and could be considered as possible causative agents of RMS.
Bacterial cells of the marine fish pathogen Photobacterium damsela subsp. piscicida were grown in novel culture media. A mixture of whole cells and extracellular components was inactivated and used in bath, intraperitoneal (i.p.) and oral vaccination of sea bass, Dicentrarchus labrax, employing two sizes of fish. A commercial vaccine was used for comparative purposes. Control and immunized fish were either bath or intraperitoneally challenged 6 and 12 weeks post-vaccination. Small fish had significantly higher relative percentage survival with the novel vaccine mixture both at 6 and 12 weeks post-vaccination by bath, in comparison with the commercial vaccine. No protection was afforded at 6 or 12 weeks post-immunization by either vaccine after challenge via i.p. injection. Sea bass (1.5-2 g) intraperitoneally vaccinated with various adjuvanted vaccine mixtures were not protected against pasteurellosis. In contrast, larger sea bass (20 g) benefited from vaccination with the novel vaccine mixtures. Intraperitoneal challenge with the pathogen resulted in protection in both fish groups vaccinated with novel vaccine mixtures, whereas control fish suffered high mortalities (> 80%). Orally vaccinated fish were immersion challenged with the pathogen. At 6 and 12 weeks post-vaccination the control fish had a high mortality and the fish vaccinated with the novel vaccine mixture achieved good protection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.