It has been known for centuries that floral and extra-floral nectar secreted by plants attracts and rewards animals. Extra-floral nectar is involved in so-called indirect defense by attracting animals (generally ants) that prey on herbivores, or by discouraging herbivores from feeding on the plant. Floral nectar is presented inside the flower close to the reproductive organs and rewards animals that perform pollination while visiting the flower. In both cases nectar is a source of carbon and nitrogen compounds that feed animals, the most abundant solutes being sugars and amino acids. Plant–animal relationships involving the two types of nectar have therefore been used for a long time as text-book examples of symmetric mutualism: services provided by animals to plants in exchange for food provided by plants to animals. Cheating (or deception or exploitation), namely obtaining the reward/service without returning any counterpart, is however, well-known in mutualistic relationships, since the interacting partners have conflicting interests and selection may favor cheating strategies. A more subtle way of exploiting mutualism was recently highlighted. It implies the evolution of strategies to maximize the benefits obtained by one partner while still providing the reward/service to the other partner. Several substances other than sugars and amino acids have been found in nectar and some affect the foraging behavior of insects and potentially increase the benefits to the plant. Such substances can be considered plant cues to exploit mutualism. Recent evidence motivated some authors to use the term “manipulation” of animals by plants in nectar-mediated mutualistic relationships. This review highlights the recent background of the “manipulation” hypothesis, discussing it in the framework of new ecological and evolutionary scenarios in plant–animal interactions, as a stimulus for future research.
Many studies have focused on the impacts of climate change on biological assemblages, yet little is known about how climate interacts with other major anthropogenic influences on biodiversity, such as habitat disturbance. Using a unique global database of 1128 local ant assemblages, we examined whether climate mediates the effects of habitat disturbance on assemblage structure at a global scale. Species richness and evenness were associated positively with temperature, and negatively with disturbance. However, the interaction among temperature, precipitation and disturbance shaped species richness and evenness. The effect was manifested through a failure of species richness to increase substantially with temperature in transformed habitats at low precipitation. At low precipitation levels, evenness increased with temperature in undisturbed sites, peaked at medium temperatures in disturbed sites and remained low in transformed sites. In warmer climates with lower rainfall, the effects of increasing disturbance on species richness and evenness were akin to decreases in temperature of up to 98C. Anthropogenic disturbance and ongoing climate change may interact in complicated ways to shape the structure of assemblages, with hot, arid environments likely to be at greatest risk.
What forces structure ecological assemblages? A key limitation to general insights about assemblage structure is the availability of data that are collected at a small spatial grain (local assemblages) and a large spatial extent (global coverage). Here, we present published and unpublished data from 51 ,388 ant abundance and occurrence records of more than 2,693 species and 7,953 morphospecies from local assemblages collected at 4,212 locations around the world. Ants were selected because they are diverse and abundant globally, comprise a large fraction of animal biomass in most terrestrial communities, and are key contributors to a range of ecosystem functions. Data were collected between 1949 and 2014, and include, for each geo‐referenced sampling site, both the identity of the ants collected and details of sampling design, habitat type, and degree of disturbance. The aim of compiling this data set was to provide comprehensive species abundance data in order to test relationships between assemblage structure and environmental and biogeographic factors. Data were collected using a variety of standardized methods, such as pitfall and Winkler traps, and will be valuable for studies investigating large‐scale forces structuring local assemblages. Understanding such relationships is particularly critical under current rates of global change. We encourage authors holding additional data on systematically collected ant assemblages, especially those in dry and cold, and remote areas, to contact us and contribute their data to this growing data set.
Many plant-derived chemicals may have an impact on the functioning of the animal brain. The mechanisms by which the psychoactive components of these various products have their effects have been widely described, but the question of why they have these effects has been almost totally ignored. Recent evidence suggests that plants may produce chemicals to manipulate their partner ants and to make reciprocation more beneficial. In the present review we propose that these plant-derived chemicals could have evolved in plants to attract and manipulate ant behaviour; this would place the plant–animal interaction in a different ecological context and open new ecological and neurobiological perspectives for drug seeking and use.
Knowledge of the role of ants in many agroecosystems is relatively scarce, and in temperate regions the possibility to exploit ants as biocontrol agents for crop protection is still largely unexplored. Drawing inspiration from mutualistic ant-plant relationships mediated by extrafloral nectaries (EFNs), we tested the use of artificial nectaries (ANs) in order to increase ant activity on pear trees and to evaluate the effects on the arthropods, plant health and fruit production. While EFNs secrete a complex solution mainly composed of sugars and amino acids, ANs were filled with water and sucrose only. The results suggest that ANs can be used as manipulative instruments to increase ant activity over long periods of time. High ant activity was significantly linked to lower incidence of the pathogen fungus Venturia pyrina (pear scab) on pear leaves, and of the presence of Cydia pomonella (codling moth) caterpillars on pear fruit production. These results further encourage exploring underrated possibilities in the development of new tools for conservation biological control (CBC).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.