The degree of crystallinity of cellulose was used for assessing the degradation level of coated and uncoated samples of pine wood after weathering. X-ray diffraction (XRD) and Fourier Transform Infrared (FT-IR) spectroscopy measured the changes in the surface crystallinity of cellulose resulting from weathering, both natural and artificial. Both techniques revealed an increase in the crystallinity index (CI) of cellulose when wood was subjected to weathering. An increase in the size of crystallites was also observed by XRD measurements. These results were related to the reduction of the amorphous fractions of wood, and, consequently, to the enrichment of the relative crystalline content. Thanks to FT-IR analysis, the degradation of hemicellulose was observed for uncoated samples after exposure to artificial weathering. The effect of weathering was less evident on coated samples because of the protective action of the coating. A good correlation between the crystallinity indexes obtained from FT-IR and XRD was found. The experimental results proved that the proposed method may be a very useful tool for a rapid and accurate estimation of the degradation level of wood exposed to weathering. This methodology can find application in the field of conservation and restoration of wooden objects or in the industry of wood coatings.
Novel photopolymerizable nanocomposite formulations, able to photopolymerize with a dual curing mechanism (cationic and radical), were developed, characterized and used in the stereolithography (SL) process for the construction of 3D objects with a very simple geometry. The influence of the presence of organically modified montmorillonite (OM) nanoparticles on the reactivity of the photopolymerizable liquid mixtures was firstly analyzed, as function of the amount of nanofiller, by photocalorimetric analysis (p-DSC). The basal distance of OM before and after mixing with the photocurable formulation was characterized by X-ray diffraction. Composites with higher content of OM show an intercalated structure. An exfoliated structure was instead observed in the composites with the lowest OM content, after photocuring in the SL apparatus. These results were also confirmed by the morphological analysis performed by SEM. The glass transition temperature of nanocomposites, photocured by stereolithography, was finally measured by TMA and DSC techniques, confirming that the photocurable formulation loaded with the lowest amount of OM presents improved properties than the unloaded formulation.
Single-walled carbon nanotubes (SWCNTs) were suspended in 1,2-dichloroethane by noncovalent functionalization with a low-band-gap conjugated polymer 1 alternating dialkoxyphenylene-bisthiophene units with benzo[c][2,1,3]thiadiazole monomeric units. The suspended 1/SWCNT blend was transferred onto different solid substrates by the Langmuir-Schaefer deposition method, resulting in films with a high percentage of aligned nanotubes. Photoelectrochemical characterization of 1/SWCNT thin films on indium-tin oxide showed the benefits of SWCNT alignment for photoconversion efficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.