In the modern era of virtual computers over the notional environment of computer networks, the protection of influential documents is a major concern. To bring out this motto, digital watermarking with biometric features plays a crucial part. It utilizes advanced technology of cuffing data into digital media, i.e., text, image, video, or audio files. The strategy of cuffing an image inside another image by applying biometric features namely signature and fingerprint using watermarking techniques is the key purpose of this study. To accomplish this, a combined watermarking strategy consisting of Discrete Wavelet Transform, Discrete Cosine Transform, and Singular Value Decomposition (DWT-DCT-SVD) is projected for authentication of image that is foolproof against attacks. Here, singular values of watermark1 (fingerprint) and watermark2 (signature) are obtained by applying DWT-DCT-SVD. Affixing both the singular values of watermarks, we acquire the transformed watermark. Later, the same is applied to cover image to extract the singular values. Then we add these values to the cover image and transformed watermark to obtain a final watermarked image containing both signature and fingerprint. To upgrade the reliability, sturdiness, and originality of the image, a fusion of watermarking techniques along with dual biometric features is exhibited. The experimental results conveyed that the proposed scheme achieved an average PSNR value of about 40 dB, an average SSIM value of 0.99, and an embedded watermark resilient to various attacks in the watermarked image.
Cervical cancer affects nearly 4% of the women across the globe and leads to mortality if not treated in early stage. A few decades before, the mortality rate was too high when compared to the present statistics. This is achieved as nowadays most of women are aware of this disease and undergo health examination mainly for screening cervical cancer on regular basis. But only the accurate diagnosis can be helpful for further treatment. Many works are carried out for accurate diagnosis and always have some limitations in accurate predictions. In this work, an efficient algorithm is proposed for the accurate diagnosis of cervical cancer. A meta-heuristic called artificial Jellyfish search optimizer (JS) algorithm is combined with artificial neural network (ANN) to tackle this problem. The proposed algorithm is called JellyfishSearch_ANN and is employed to classify the cervical cancer dataset with four type of targets based on the examination. The JellyfishSearch_ANN provides outstanding results among other classifiers taken for comparison and mainly its classification accuracy is found to be above 98.87% for all targets.
Most people worldwide, irrespective of their age, are suffering from massive cardiac arrest. To detect heart attacks early, many researchers worked on the clinical datasets collected from different open-source datasets like PubMed and UCI repository. However, most of these datasets have collected nearly 13 to 147 raw attributes in textual format and implemented traditional data mining approaches. Traditional machine learning approaches just analyze the data extracted from the images, but the extraction mechanism is inefficient and it requires more number of resources. The authors of this research article proposed a system that is aimed at predicting heart attacks by integrating the techniques of computer vision and deep learning approaches on the heart images collected from the clinical labs, which are publicly available in the KAGGLE repository. The authors collected live images of the heart by scanning the images through IoT sensors. The primary focus is to enhance the quality and quantity of the heart images by passing through two popular components of GAN. GAN introduces noise in the images and tries to replicate the real-time scenarios. Subsequently, the available and newly created images are segmented by applying a multilevel threshold operation to find the region of interest. This step helps the system to predict the accurate attack rate by considering various factors. Earlier researchers have obtained sound accuracy by generating similar heart images and found the ROI parts of the 2D echo images. The proposed methodology has achieved an accuracy of 97.33% and a 90.97% true-positive rate. The reason for selecting the computed tomography (CT-SCAN) images is due to the gray scale images giving more reliable information at a low computational cost.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.