This study applies a thermo-elasto-plastic-creep finite element procedure to the analysis of an accidental behavior of nuclear fuel as well as normal behavior. The result will be used as basic data for the robust design of nuclear power plant and fuels. We extended the range of mechanical strain from small or medium to large adopting the Hencky logarithmic strain measure in addition to the Green-Lagrange strain and Almansi strain measures, for the possible large strain situation in accidental environments. We found that there is a critical heat generation after LOCA without ECCS (event category 5), under which the cladding of fuel sustains the internal pressure and temperature for the time being for the rescue of the power plant. With the heat generation above the critical value caused by malfunctioning of the control rods, the stiffness of cladding becomes zero due to the softening by high temperature. The weak position of cladding along the length continuously bulges radially to burst and to discharge radioactive substances. This kind of cases should be avoid by any means.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.