Bilayer graphene (BLG) comprises a 2D nanospace sandwiched by two parallel graphene sheets that can be used to intercalate molecules or ions for attaining novel functionalities. However, intercalation is mostly demonstrated with small, exfoliated graphene flakes. This study demonstrates intercalation of molybdenum chloride (MoCl ) into a large-area, uniform BLG sheet, which is grown by chemical vapor deposition (CVD). This study reveals that the degree of MoCl intercalation strongly depends on the stacking order of the graphene; twist-stacked graphene shows a much higher degree of intercalation than AB-stacked. Density functional theory calculations suggest that weak interlayer coupling in the twist-stacked graphene contributes to the effective intercalation. By selectively synthesizing twist-rich BLG films through control of the CVD conditions, low sheet resistance (83 Ω ▫ ) is realized after MoCl intercalation, while maintaining high optical transmittance (≈95%). The low sheet resistance state is relatively stable in air for more than three months. Furthermore, the intercalated BLG film is applied to organic solar cells, realizing a high power conversion efficiency.
Aligned growth of transition metal dichalcogenides and related two-dimensional (2D) materials is essential for the synthesis of high-quality 2D films due to effective stitching of merging grains. Here, we demonstrate the controlled growth of highly aligned molybdenum disulfide (MoS) on c-plane sapphire with two distinct orientations, which are highly controlled by tuning sulfur concentration. We found that the size of the aligned MoS grains is smaller and their photoluminescence is weaker as compared with those of the randomly oriented grains, signifying enhanced MoS-substrate interaction in the aligned grains. This interaction induces strain in the aligned MoS, which can be recognized from their high susceptibility to air oxidation. The surface-mediated MoS growth on sapphire was further developed to the rational synthesis of an in-plane MoS-graphene heterostructure connected with the predefined orientation. The in-plane epitaxy was observed by low-energy electron microscopy. Transmission electron microscopy and scanning transmission electron microscopy suggest the alignment of a zigzag edge of MoS parallel to a zigzag edge of the neighboring graphene. Moreover, better electrical contact to MoS was obtained by the monolayer graphene compared with a conventional metal electrode. Our findings deepen the understanding of the chemical vapor deposition growth of 2D materials and also contribute to the tailored synthesis as well as applications of advanced 2D heterostructures.
Highly concentrated solutions composed of lithium bis(fluorosulfonyl)imide (LiFSI) and sulfolane (SL) are promising liquid electrolytes for lithium metal batteries because of their high anodic stability, low flammability, and high compatibility with lithium metal anodes. However, it is still challenging to obtain the stable lithium metal anodes in the concentrated electrolytes due to their poor wettability to the conventional polyolefin separators. Here, we report that the highly concentrated 1:2.5 LiFSI/SL electrolyte coupled with a three-dimensionally ordered macroporous polyimide (3DOM PI) separator enables the stable lithium plating/stripping cycling with an average Coulombic efficiency of ca. 98% for over 400 cycles at 1.0 mA cm–2. The 3DOM PI separator shows good electrolyte wettability and large electrolyte uptake due to its high porosity and polar constituent of the imide structure, allowing superior cycling performance in the highly concentrated solution, compared with the polyolefin separators. Electrochemical and spectroscopic analyses reveal that the superior cycling stability in the concentrated electrolyte is attributed to the formation of highly stable and Li+ ion conductive solid electrolyte interphase (SEI) layer derived from FSI– anions, which reduces the side reactions of SL with lithium metal, prevents the growth of lithium dendrites, and suppresses the increase in cell impedance over long-term cycling. Our findings demonstrate that polar and porous separators could effectively improve the affinity to the concentrated electrolytes and allow the formation of the anion-derived SEI layer by increasing the salt concentration of the electrolytes, achieving the long-term stable lithium metal anode.
In spite of recent progress of graphene growth using chemical vapor deposition, it is still a challenge to precisely control the nucleation site of graphene for the development of wafer-scale single-crystal graphene. In addition, the postgrowth patterning used for device fabrication deteriorates the quality of graphene. Herein we demonstrate the site-selective nucleation of single-crystal graphene on Cu foil based on spatial control of the local CH concentration by a perforated Ni foil. The catalytically active Ni foil acts as a CH modulator, resulting in millimeter-scale single-crystal grains at desired positions. The perforated Ni foil also allows to synthesize patterned graphene without any postgrowth processing. Furthermore, the uniformity of monolayer graphene is significantly improved when a plain Ni foil is placed below the Cu. Our findings offer a facile and effective way to control the nucleation of high-quality graphene, meeting the requirements of industrial processing.
In eukaryotes, the spindle assembly checkpoint (SAC) ensures the fidelity of chromosome segregation through monitoring the bipolar attachment of microtubules to kinetochores. Recently, the SAC components Mitotic Arrest Deficient 1 and 2 (MAD1 and MAD2) were found to associate with the nuclear pore complex (NPC) during interphase and to require certain nucleoporins, such as Tpr in animal cells, to properly localize to kinetochores. In plants, the SAC components MAD2, BUR1, BUB3 and Mps1 have been identified, but their connection to the nuclear pore has not been explored. Here, we show that AtMAD1 and AtMAD2 are associated with the nuclear envelope during interphase, requiring the Arabidopsis homolog of Tpr, NUA. Both NUA and AtMAD2 loss-of-function mutants have a shorter primary root and a smaller root meristem, and this defect can be partially rescued by sucrose. Mild AtMAD2 over-expressors exhibit a longer primary root, and an extended root meristem. In BY-2 cells, AtMAD2 is associated with kinetochores during prophase and prometaphase, but not metaphase, anaphase and telophase. Protein-interaction assays demonstrate binding of AtMAD2 to AtMAD1 and AtMAD1 to NUA. Together, these data suggest that NUA scaffolds AtMAD1 and AtMAD2 at the nuclear pore to form a functional complex and that both NUA and AtMAD2 suppress premature exit from cell division at the Arabidopsis root meristem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.