Eddy currents are induced when a nonmagnetic, conductive material is moving as the result of being subjected to a magnetic field, or if it is placed in a time-varying magnetic field. These currents circulate in the conductive material and are dissipated, causing a repulsive force between the magnet and the conductor. With this concept, eddy current damping can be used as a form of viscous damping. The present study investigates analytically and experimentally the characteristics of eddy current damping when a permanent magnet is placed in a conductive tube. The theoretical model of eddy current damping as the result of a magnet in a copper tube is developed from electromagnetics and is verified from experiments. The experiments include a drop test whereby a magnet is dropped in a copper tube to measure the damping force in a steady-state, and a dynamic test is used to measure the same phenomenon in a dynamic-state. The drop test shows that the present model can accurately predict the force of steady-state damping. From the dynamic test, although predictability is not accurate at high excitation frequencies, the present model can be used to predict damping force at low excitation frequencies.
This study was performed to evaluate the use of vibrating microneedles for the transdermal delivery of vitamin C. The microneedles were designed to vibrate at three levels of intensity. In vitro permeation by vitamin C was evaluated according to the specific conditions such as vibration intensity (levels 1, 2 and 3), application time (1, 3, 5, 7 and 10 min), and application power (500, 700 and 1,000 g). The highest permeation of vitamin C was observed at level 3 of vibration intensity, 5 min of application, and 1,000 g of application power. Vitamin C gel showed no cytotoxic effect against Pam212 cells or skin irritation effects. A pharmacokinetic study of the gel in rats was conducted under optimized conditions. The AUC 0 -∞ and C max increased 1.35-fold and 1.44-fold, respectively, compared with those after vitamin C gel without application with vibrating microneedles. The present study suggests that vibrating microneedles can be used to facilitate the skin permeability of vitamin C under optimal conditions.
Nowadays, technologies are changing through industrial fusion and government & corporates need to predict the flow & direction of technologies. These flow & direction can be grasped through the analysis of patent information. The patent information uses the common classification codes in the world, and it is possible for the quantitative analysis based on objective data with the time information of technical area. The methods of patent analysis analyzed the technology fusion by using citation analysis &
Advanced tanks in the future combat system are expected to have the trends of large caliber, high explosive shell and light weight for destructive power and improvement in mobility. Their guns are required to have longer barrels to meet increased muzzle exit velocities. However, as the length of the barrel is extended, the vibrations induced by the breech forces in fire and the terrain lead to increased muzzle pointing errors. Therefore, the fire-induced and terrain-induced vibrations must be attenuated. A method to reduce these vibrations without the significant increase of the gun mass is to use the forward thermal shroud as part of a tuned mass damper. In this study, the dynamically-tuned-shroud using this shroud and leaf springs is introduced and its effectiveness on the vibration attenuations of the barrel are verified. The parametric studies on the stiffness of these leaf springs are performed and the analytical results are verified using the experimental model of the dynamically-tuned-shroud.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.