Background Leaf color is an important ornamental trait of colored-leaf plants. The change of leaf color is closely related to the synthesis and accumulation of anthocyanins in leaves. Acer pseudosieboldianum is a colored-leaf tree native to Northeastern China, however, there was less knowledge in Acer about anthocyanins biosynthesis and many steps of the pathway remain unknown to date. Results Anthocyanins metabolite and transcript profiling were conducted using HPLC and ESI-MS/MS system and high-throughput RNA sequencing respectively. The results demonstrated that five anthocyanins were detected in this experiment. It is worth mentioning that Peonidin O-hexoside and Cyanidin 3, 5-O-diglucoside were abundant, especially Cyanidin 3, 5-O-diglucoside displayed significant differences in content change at two periods, meaning it may be play an important role for the final color. Transcriptome identification showed that a total of 67.47 Gb of clean data were obtained from our sequencing results. Functional annotation of unigenes, including comparison with COG and GO databases, yielded 35,316 unigene annotations. 16,521 differentially expressed genes were identified from a statistical analysis of differentially gene expression. The genes related to leaf color formation including PAL, ANS, DFR, F3H were selected. Also, we screened out the regulatory genes such as MYB, bHLH and WD40. Combined with the detection of metabolites, the gene pathways related to anthocyanin synthesis were analyzed. Conclusions Cyanidin 3, 5-O-diglucoside played an important role for the final color. The genes related to leaf color formation including PAL, ANS, DFR, F3H and regulatory genes such as MYB, bHLH and WD40 were selected. This study enriched the available transcriptome information for A. pseudosieboldianum and identified a series of differentially expressed genes related to leaf color, which provides valuable information for further study on the genetic mechanism of leaf color expression in A. pseudosieboldianum.
Extensive areas in China have been receiving high levels of acid rain. Acid rain affects plant growth by reducing the chlorophyll content, destroying leaf structure, and hindering photosynthesis. Acer ginnala Maxim. has a high economic, ornamental, and medicinal value. To clarify the acid rain resistance mechanism of maple trees, the chlorophyll content, gas exchange parameters, and chlorophyll fluorescence parameters were measured in the leaves of 2-year-old Acer ginnala seedlings 0, 15, and 30 days after simulated acid rain at pH 5.6, 5.0, 4.5, 4.0, 3.5, and 2.5. The results showed that the relative content of chlorophyll gradually decreased with the increasing acidity. The net photosynthetic rate (Pn) decreased with the increasing acidity, and the difference among the treatments was significant except for between pH 5.0 and the control. The stomatal conductance at pH < 5.0 was significantly lower than that of the control, and the intercellular carbon dioxide (CO2) concentration of the leaves with the pH < 4.5 treatments was significantly lower than that of the control. As the acidity increased, both Fv/Fm and Fv/F0 (Fv, variable fluorescence; Fm, maximum fluorescence; F0, initial fluorescence) decreased. The difference in the photosynthetic performance index based on the absorbed light energy (PIabs) between the pH 5.0 treatment and the control was not significant during the three periods after the simulated acid rain stress, whereas in the other treatments, this index was significantly lower than that of the control. Our results indicated that under mild acid rain (pH > 4.0) stress, the chlorophyll content, gas exchange parameters, and chlorophyll fluorescence parameters of Acer ginnala changed little, whereas in the other treatments, especially the severe acid rain (pH < 3.0) treatment, these indices showed significant changes that had a severe impact on plant growth and development.
Background Leaf color is an important ornamental trait of colored-leaf plants. The change of leaf color is closely related to the synthesis and accumulation of anthocyanins in leaves. Acer pseudosieboldianum is a colored-leaf tree native to Northeastern China, however, there was less knowledge in Acer about anthocyanins biosynthesis and many steps of the pathway remain unknown to date. Results Anthocyanins metabolite and transcript profiling were conducted using HPLC and ESI-MS/MS system and high-throughput RNA sequencing respectively. The results demonstrated that five anthocyanins were detected in this experiment. It is worth mentioning that Peonidin O-hexoside and Cyanidin 3 5-O-diglucoside were abundant, especially Cyanidin 3 5-O-diglucoside displayed significant differences in content change at two periods, meaning it may be play an important role for the final color. Transcriptome identification showed that a total of 67.47 Gb of clean data were obtained from our sequencing results. Functional annotation of unigenes, including comparison with COG and GO databases, yielded 35,316 unigene annotations. 16,521 differentially expressed genes were identified from a statistical analysis of differentially gene expression. The genes related to leaf color formation including PAL, ANS, DFR, F3H were selected. Also, we screened out the regulatory genes such as MYB, bHLH and WD40. Combined with the detection of metabolites, the gene pathways related to anthocyanin synthesis were analyzed. Conclusion Cyanidin 3, 5-O-diglucoside played an important role for the final color. The genes related to leaf color formation including PAL, ANS, DFR, F3H and regulatory genes such as MYB, bHLH and WD40 were selected. This study enriched the available transcriptome information for A. pseudosieboldianum and identified a series of differentially expressed genes related to leaf color, which provides valuable information for further study on the genetic mechanism of leaf color expression in A. pseudosieboldianum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.