Abstract.Recently, several simple and cost-effective pedestrian navigation systems (PNS) have been introduced. These systems utilized accelerometers and gyros in order to determine step, stride and heading. The performance of the PNS depends on not only the accuracy of the sensors but also the measurement processing methods. In most PNS, a vertical impact is measured to detect a step. A step is counted when the measured vertical impact is larger than the given threshold. The numbers of steps are miscounted sometimes since the vertical impacts are not correctly measured due to inclination of the foot. Because the stride is not constant and changes with speed, the step length parameter must be determined continuously during the walk in order to get the accurate travelled distance. Also, to get the accurate heading, it is required to overcome drawbacks of low grade gyro and magnetic compass. This paper proposes new step, stride and heading determination methods for the pedestrian navigation system: A new reliable step determination method based on pattern recognition is proposed from the analysis of the vertical and horizontal acceleration of the foot during one step of the walking. A simple and robust stride determination method is also obtained by analysing the relationship between stride, step period and acceleration. Furthermore, a new integration method of gyroscope and magnetic compass gives a reliable heading. The walking test is preformed using the implemented system consists of a 1-axis accelerometer, a 1-axis gyroscope, a magnetic compass and 16-bit microprocessor. The results of walking test confirmed the proposed method.
Due to their complementary features of GPS and INS, the GPS/INS integrated navigation system is increasingly being used for a variety of commercial and military applications. An attitude determination GPS (ADGPS) receiver, with multiple antennas, can be more effectively integrated with a low-cost IMU since the receiver gives not only position and velocity data but also attitude data. This paper proposes a low-cost attitude determination GPS/INS integrated navigation system. The proposed navigation system comprises an ADGPS receiver, a navigation computer unit (NCU), and a low-cost commercial MEMS IMU. The navigation software includes a fault detection and isolation (FDI) algorithm for integrity. In order to evaluate the performance of the proposed navigation system, two flight tests have been performed using a small aircraft. The first flight test confirmed the fundamental operation of the proposed navigation system and the effectiveness of the FDI algorithm. The second flight test evaluated the performance of the proposed navigation system and demonstrated the benefit of GPS attitude information in a high dynamic environment. The flight test results show that the proposed ADGPS/INS integrated navigation unit gives reliable navigation performance even when anomalous GPS data is provided and gives better navigation performance than a conventional GPS/INS unit.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.