Embedded devices are gaining popularity day by day due to the expanded use of Internet of Things applications. However, these embedded devices have limited capabilities concerning power and memory. Thus, the applications need to be tailored in such a way to perform the specified tasks within the constrained resources with the same accuracy. In Real-Time task scheduling, one of the challenging factors is the intelligent modelling of input tasks in such a way that it produces not only logically correct output within the deadline but also consumes minimum CPU power. Algorithms like Rate Monotonic and Earliest Deadline First compute hyper-period of input tasks for periodic repetition of the same set of tasks on CPU. However, at times when the tasks are not adequately modelled, they lead to an enormously high value of hyper-period which result in more CPU cycles and power consumption. Many state-of-the-art solutions are presented in this regard, but the main problem is that they limit tasks from having all possible period values; however, with the vision of Industry 4.0, where most of the tasks will be doing some critical manufacturing activities, it is highly discouraged to prevent them of a certain period. In this paper, we present a resource-aware approach to minimise the hyper-period of input tasks based on device profiles and allows tasks of every possible period value to admit. The proposed work is compared with similar existing techniques, and results indicate significant improvements regarding power consumptions.
Real-Time Internet of Things (RT-IoT) is a newer technology paradigm envisioned as a global inter-networking of devices and physical things enabling real-time communication over the Internet. The research in Edge Computing and 5G technology is making way for the realisation of future IoT applications. In RT-IoT tasks will be performed in real-time for the remotely controlling and automating of various jobs and therefore, missing their deadline may lead to hazardous situations in many cases. For instance, in the case of safety-critical and mission-critical IoT systems, a missed task could lead to a human loss. Consequently, these systems must be simulated, as a result, and tasks should only be deployed in a real scenario if the deadline is guaranteed to be met. Numerous simulation tools are proposed for traditional real-time systems using desktop technologies, but these relatively older tools do not adapt to the new constraints imposed by the IoT paradigm. In this paper, we design and implement a cloud-based novel architecture for the formal verification of IoT jobs and provide a simulation environment for a typical RT-IoT application where the feasibility of real-time remote tasks is perceived. The proposed tool, to the best of our knowledge, is the first of its kind effort to support not only the feasibility analysis of real-time tasks but also to provide a real environment in which it formally monitors and evaluates different IoT tasks from anywhere. Furthermore, it will also act as a centralised server for evaluating and tracking the real-time scheduled jobs in a smart space. The novelty of the platform is purported by a comparative analysis with the state-of-art solutions against attributes which is vital for any open-source tools in general and IoT in specifics.
Available space in congested cities is getting scarce due to growing urbanization in the recent past. The utilization of underground space is considered as a solution to the limited space in smart cities. The numbers of underground facilities are growing day by day in the developing world. Typical underground facilities include the transit subway, parking lots, electric lines, water supply and sewer lines. The likelihood of the occurrence of accidents due to underground facilities is a random phenomenon. To avoid any accidental loss, a risk assessment method is required to conduct the continuous risk assessment and report any abnormality before it happens. In this paper, we have proposed a hierarchical fuzzy inference based model for under-ground risk assessment. The proposed hierarchical fuzzy inference architecture reduces the total number of rules from the rule base. Rule reduction is important because the curse of dimensionality damages the transparency and interpretation as it is very tough to understand and justify hundreds or thousands of fuzzy rules. The computation time also increases as rules increase. The proposed model takes 175 rules having eight input parameters to compute the risk index, and the conventional fuzzy logic requires 390,625 rules, having the same number of input parameters to compute risk index. Hence, the proposed model significantly reduces the curse of dimensionality. Rule design for fuzzy logic is also a tedious task. In this paper, we have also introduced new rule schemes, namely maximum rule-based and average rule-based; both schemes can be used interchangeably according to the logic needed for rule design. The experimental results show that the proposed method is a virtuous choice for risk index calculation where the numbers of variables are greater.
Computation offloading enables intensive computational tasks in edge computing to be separated into multiple computing resources of the server to overcome hardware limitations. Deep learning derives the inference approach based on the learning approach with a volume of data using a sufficient computing resource. However, deploying the domain-specific inference approaches to edge computing provides intelligent services close to the edge of the networks. In this paper, we propose intelligent edge computing by providing a dynamic inference approach for building environment control. The dynamic inference approach is provided based on the rules engine that is deployed on the edge gateway to select an inference function by the triggered rule. The edge gateway is deployed in the entry of a network edge and provides comprehensive functions, including device management, device proxy, client service, intelligent service and rules engine. The functions are provided by microservices provider modules that enable flexibility, extensibility and light weight for offloading domain-specific solutions to the edge gateway. Additionally, the intelligent services can be updated through offloading the microservices provider module with the inference models. Then, using the rules engine, the edge gateway operates an intelligent scenario based on the deployed rule profile by requesting the inference model of the intelligent service provider. The inference models are derived by training the building user data with the deep learning model using the edge server, which provides a high-performance computing resource. The intelligent service provider includes inference models and provides intelligent functions in the edge gateway using a constrained hardware resource based on microservices. Moreover, for bridging the Internet of Things (IoT) device network to the Internet, the gateway provides device management and proxy to enable device access to web clients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.