FLASH radiotherapy is an emerging radiotherapy technique used to spare normal tissues. It employs ultra-high dose rate radiation beams over 40 Gy/s, which is significantly higher than those of conventional radiotherapy. In this study, a fiber-optic radiation sensor (FORS) was fabricated using a plastic scintillator, an optical filter, and a plastic optical fiber to measure the ultra-high dose rate electron beams over 40 Gy/s used in FLASH radiotherapy. The radiation-induced emissions, such as Cherenkov radiation and fluorescence generated in a transmitting optical fiber, were spectrally discriminated from the light outputs of the FORS. To evaluate the linearity and dose rate dependence of the FORS, the outputs of the fiber-optic radiation sensor were measured according to distances from an electron scattering device, and the results were compared with those of an ionization chamber and radiochromic films. Finally, the percentage depth doses were obtained using the FORS as a function of depth in a water phantom. This study found that ultra-high dose rate electron beams over 40 Gy/s could be measured in real time using a FORS.
The use of GEANT4 simulation toolkit has increased in the radiation medical field for the design of treatment system and the calibration or validation of treatment plans. Moreover, it is used especially on calculating dose simulation using medical data for radiation therapy. However, using internal visualization tool of GEANT4 detector constructions on expressing dose result has deficiencies because it cannot display isodose line. No one has attempted to use this code to a real patient's data. Therefore, to complement this problem, using the result of gMocren that is a three-dimensional volume-visualizing tool, we tried to display a simulated dose distribution and isodose line on medical image. In addition, we have compared cross-validation on the result of gMocren and GEANT4 simulation with commercial radiation treatment planning system. We have extracted the analyzed data of dose distribution, using real patient's medical image data with a program based on Monte Carlo simulation and visualization tool for radiation isodose mapping.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.