Cofilin-actin rods are inclusion-like structures that are induced by certain chemical or physical stresses in cultured cells, and the rods formed in neurons are thought to be associated with neurodegeneration. Here, we cloned an Aplysia cofilin homolog and overexpressed it in cultured neurons. Overexpressed cofilin formed rod-like structures that included actin. The overall neuronal morphology was unaffected by cofilin overexpression; however, a decrease in number of synaptic varicosities was observed. Consistent with this structural change by cofilin overexpression, the synaptic strength was reduced, and furthermore, the long-term facilitation elicited by repeated pulses of 5-hydroxytryptamine was impaired in sensory-to-motor synapses. However, cofilin overexpression did not induce programmed cell death. These findings suggest that the formation of cofilin-actin rod-like structures can lead to neurodegeneration, and this might be a mechanism of rundown of neuronal and synaptic function without cell death in neurodegenerative diseases.neurodegeneration ͉ Hirano body ͉ long-term facilitation
Repeated pulses of serotonin (5-HT) induce long-term facilitation (LTF) of the synapses between sensory and motor neurons of the gill-withdrawal reflex in Aplysia. To explore how apCAM downregulation at the plasma membrane and CREB-mediated transcription in the nucleus, both of which are required for the formation of LTF, might relate to each other, we cloned an apCAM-associated protein (CAMAP) by yeast two-hybrid screening. We found that 5-HT signaling at the synapse activates PKA which in turn phosphorylates CAMAP to induce the dissociation of CAMAP from apCAM and the subsequent translocation of CAMAP into the nucleus of sensory neurons. In the nucleus, CAMAP acts as a transcriptional coactivator for CREB1 and is essential for the activation of ApC/EBP required for the initiation of LTF. Combined, our data suggest that CAMAP is a retrograde signaling component that translocates from activated synapses to the nucleus during synapse-specific LTF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.