An unresolved issue in genotoxic stress response is identification of induced regulatory proteins and how these activate tumor suppressor p53 to determine appropriate cell responses. Transcription factor KAISO was previously described to repress transcription following binding to methylated DNA. In this study, we show that KAISO is induced by DNA damage in p53-expressing cells and then interacts with the p53-p300 complex to increase acetylation of p53 K320 and K382 residues, although decreasing K381 acetylation. Moreover, the p53 with this particular acetylation pattern shows increased DNA binding and potently induces cell cycle arrest and apoptosis by activating transcription of CDKN1A (cyclin-dependent kinase inhibitor 1) and various apoptotic genes. Analogously, in Kaiso KO mouse embryonic fibroblast cells, p53-to-promoter binding and up-regulation of p21 and apoptosis gene expression is significantly compromised. KAISO may therefore be a critical regulator of p53-mediated cell cycle arrest and apoptosis in response to various genotoxic stresses in mammalian cells.KAISO | p53 | cell cycle arrest | apoptosis | p300
Background: Promyelocytic leukemia zinc finger (PLZF) is transcription repressor that recruits nuclear co-repressors at the target promoters. PLZF is overexpressed in various human solid tumors, such as clear cell renal carcinoma, glioblastoma, and seminoma. Results: PLZF represses transcription of CDKN1A by inhibition of p53 acetylation, Sp1 binding. Conclusion: PLZF causes cellular transformation and increases cell proliferation by repressing transcription of CDKN1A. Significance: PLZF can act as a proto-oncogene depending on the cell types.
The tumour-suppressor gene CDKN1A (encoding p21Waf/Cip1) is thought to be epigenetically repressed in cancer cells. FBI-1 (ZBTB7A) is a proto-oncogenic transcription factor repressing the alternative reading frame and p21WAF/CDKN1A genes of the p53 pathway. FBI-1 interacts directly with MBD3 (methyl-CpG–binding domain protein 3) in the nucleus. We demonstrated that FBI-1 binds both non-methylated and methylated DNA and that MBD3 is recruited to the CDKN1A promoter through its interaction with FBI-1, where it enhances transcriptional repression by FBI-1. FBI-1 also interacts with the co-repressors nuclear receptor corepressor (NCoR), silencing mediator for retinoid and thyroid receptors (SMRT) and BCL-6 corepressor (BCoR) to repress transcription. MBD3 regulates a molecular interaction between the co-repressor and FBI-1. MBD3 decreases the interaction between FBI-1 and NCoR/SMRT but increases the interaction between FBI-1 and BCoR. Because MBD3 is a subunit of the Mi-2 autoantigen (Mi-2)/nucleosome remodelling and histone deacetylase (NuRD)-HDAC complex, FBI-1 recruits the Mi-2/NuRD-HDAC complex via MBD3. BCoR interacts with the Mi-2/NuRD-HDAC complex, DNMTs and HP1. MBD3 and BCoR play a significant role in the recruitment of the Mi-2/NuRD-HDAC complex– and the NuRD complex–associated proteins, DNMTs and HP. By recruiting DNMTs and HP1, Mi-2/NuRD-HDAC complex appears to play key roles in epigenetic repression of CDKN1A by DNA methylation.
Transcriptional regulation by p53 is thought to play a role in its ability to suppress tumorigenesis. However, there remain gaps in understanding about how p53 regulates transcription and how disrupting this function may promote cancer. Here we report a role in these processes for the kidney cancer-related gene KR-POK (ZBTB7C), a POZ domain and Kr€ uppel-like zinc finger transcription factor that we found to physically interact with p53. Murine embryonic fibroblasts isolated from genetically deficient mice (Kr-pok À/À MEFs) exhibited a proliferative defect relative to wild-type mouse embryonic fibroblasts (MEF). The zinc finger domain of Kr-pok interacted directly with the DNA binding and oligomerization domains of p53. This interaction was essential for Kr-pok to bind the distal promoter region of the CDKN1A gene, an important p53 target gene encoding the cell-cycle regulator p21WAF1, and to inhibit p53-mediated transcriptional activation of CDKN1A. Kr-pok also interacted with the transcriptional corepressors NCoR and BCoR, acting to repress histone H3 and H4 deacetylation at the proximal promoter region of the CDKN1A gene. Importantly, Kr-pok À/À MEFs displayed an enhancement in CDKN1A transactivation by p53 during the DNA damage response, without any parallel changes in transcription of either the p53 or Kr-pok genes themselves. Furthermore, Kr-pok promoted cell proliferation in vitro and in vivo, and its expression was increased in more than 50% of the malignant human kidney cancer cases analyzed. Together, our findings define KR-POK as a transcriptional repressor with a pro-oncogenic role that relies upon binding to p53 and inhibition of its transactivation function. Cancer Res; 72(5); 1137-48. Ó2012 AACR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.