Epstein-Barr virus (EBV)-induced gene 2 (EBI2, aka GPR183) is a G protein-coupled receptor that is required for humoral immune responses and polymorphisms in the receptor have been associated with inflammatory autoimmune diseases1-3. The natural ligand for EBI2 has been unknown. Here we describe identification of 7α, 25-dihydroxycholesterol (5-cholesten-3β, 7α, 25-triol; 7α, 25-OHC) as a potent and selective agonist of EBI2. Functional activation of EBI2 by 7α, 25-OHC and closely related oxysterols was verified by monitoring second messenger readouts and saturable, high affinity radioligand binding. Furthermore we find that 7α, 25-OHC and closely related oxysterols act as chemoattractants for immune cells expressing EBI2 by directing cell migration in vitro and in vivo. A key enzyme required for the generation of 7α, 25-OHC is cholesterol 25-hydroxylase (Ch25h)4. Similar to EBI2 receptor knockout mice, mice deficient in Ch25h fail to position activated B cells within the spleen to the outer follicle and mount a reduced plasma cell response after an immune challenge. This demonstrates that Ch25h generates EBI2 bioactivity in vivo and suggests that the EBI2 − oxysterol signaling pathway plays an important role in the adaptive immune response.
Here we report the design and evaluation of a bifunctional, small molecule switch that induces a targeted immune response against tumors in vivo. A high affinity ligand for prostate specific membrane antigen (PSMA) was conjugated to a hapten that binds dinitrophenyl (DNP)-specific antibodies. When introduced into hu-PBL-NOD/SCID mice previously immunized with a KLH-DNP immunogen, this conjugate induced a targeted antibody-dependent cellular cytotoxicity (ADCC) response to PSMA-expressing tumor cells in a mouse xenograft model. The ability to create a small molecule inducible antibody response against self-antigens using endogenous non-autoreactive antibodies may provide advantages over the autologous immune response generated by conventional vaccines in certain therapeutic settings.
Several small molecule antagonists for Smoothened (Smo) have been developed, and achieved promising preclinical efficacy in cancers that are dependent on Hedgehog (Hh) signaling. However, in a recent clinical study, a drug-resistant D473H SMO mutant was identified that is thought to be responsible for cancer relapse in a patient with medulloblastoma. Here, we report two Smo antagonists that bind to distinct sites, as compared to known antagonists and agonists, and inhibit both wild-type and mutant Smo. These findings provide an insight of the ligand-binding sites of Smo and a basis for the development of potential therapeutics for tumors with drug-resistant Smo mutations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.