Mitogen-activated protein kinase (MAPK) phosphatase-1 (MKP-1) is a dual-specificity phosphatase that is involved in the regulation of cell survival, differentiation and apoptosis through inactivating MAPKs by dephosphorylation. Here, we provide evidence for a role of MKP-1 in the glutamate-induced cell death of HT22 hippocampal cells and primary mouse cortical neurons. We suggest that, during glutamate-induced oxidative stress, protein kinase C (PKC) δ becomes activated and induces sustained activation of extracellular signal-regulated kinase 1/2 (ERK1/2) through a mechanism that involves degradation of MKP-1. Glutamate-induced activation of ERK1/2 was blocked by inhibition of PKCδ, confirming that ERK1/2 is regulated by PKCδ. Prolonged exposure to glutamate caused reduction in the protein level of MKP-1, which correlated with the sustained activation of ERK1/2. Furthermore, knockdown of endogenous MKP-1 by small interfering (si)RNA resulted in pronounced enhancement of ERK1/2 phosphorylation accompanied by increased cytotoxicity under glutamate exposure. In glutamate-treated cells, MKP-1 was polyubiquitylated and proteasome inhibitors markedly blocked the degradation of MKP-1. Moreover, inhibition of glutamate-induced PKCδ activation suppressed the downregulation and ubiquitylation of MKP-1. Taken together, these results demonstrate that activation of PKCδ triggers degradation of MKP-1 through the ubiquitin-proteasome pathway, thereby contributing to persistent activation of ERK1/2 under glutamate-induced oxidative toxicity.
Adipogenesis is a complex process that is accompanied by a number of molecular events. In this study, a proteomic approach was adopted to identify secretory factors associated with adipogenesis. A label-free shotgun proteomic strategy was implemented to analyze proteins secreted by human adipose stromal vascular fraction cells and differentiated adipocytes. A total of 474 proteins were finally identified and classified according to quantitative changes and statistical significances. Briefly, 177 proteins were significantly upregulated during adipogenesis (Class I), whereas 60 proteins were significantly downregulated (Class II). Changes in the expressions of several proteins were confirmed by quantitative RT-PCR and immunoblotting. One obvious finding based on proteomic data was that the amounts of several extracellular modulators of Wnt and transforming growth factor-beta (TGF-beta) signaling changed during adipogenesis. The expressions of secreted frizzled-related proteins, dickkopf-related proteins, and latent TGF-beta-binding proteins were found to be altered during adipogenesis, which suggests that they participate in the fine regulation of Wnt and TGF-beta signaling. This study provides useful tools and important clues regarding the roles of secretory factors during adipogenic differentiation, and provides information related to obesity and obesity-related metabolic diseases.
ATP is co-localized with norepinephrine at the sympathetic nerve terminals and may be released simultaneously upon neuronal stimulation, which results in activation of purinergic receptors. To examine whether leptin synthesis and lipolysis are influenced by P2 purinergic receptor activation, the effects of ATP and other nucleotides on leptin secretion and glycerol release have been investigated in differentiated rat white adipocytes. Firstly, insulin-induced leptin secretion was inhibited by nucleotide treatment with the following efficacy order: 3-O-(4-benzoyl)benzoyl ATP (BzATP) > ATP > > UTP. Secondly, treatment of adipocytes with ATP increased both intracellular Ca 2؉ concentration and cAMP content. Intracellular calcium concentration was increased by ATP and UTP, but not BzATP, an effect attributed to phospholipase C-coupled P2Y 2 . On the other hand, cAMP was generated by treatment with BzATP and ATP␥S, but not UTP, indicating functional expression of adenylyl cyclase-coupled P2Y 11 receptors in white adipocytes. Thirdly, lipolysis was significantly activated by BzATP and ATP, which correlated with the characteristics of the P2Y 11 subtype. Taken together, the data presented here suggest that white adipocytes express at least two different types of P2Y receptors and that activation of P2Y 11 receptor might be involved in inhibition of leptin production and stimulation of lipolysis, suggesting that purinergic transmission can play an important role in white adipocyte physiology.Obesity results from a chronic disequilibrium between caloric intake and energy expenditure and is a major risk factor for hypertension, cardiovascular disorders, and metabolic syndromes, including insulin-independent diabetes and dyslipidemia. Lipolysis is the hydrolysis of the ester bonds in triacylglycerol, which is composed of three fatty acids esterified to glycerol. Hormone-sensitive lipase (HSL)
Sphingosine-1-phosphate (S1P) is a pluripotent lipid mediator that transmits signals through a family of G protein-coupled receptors to control diverse biological processes. Here, we investigated the effects of S1P on the levels of intracellular calcium and cAMP in differentiated rat white adipocytes and two important aspects of adipocyte-specific physiology, lipolysis and leptin production. In adipocytes, S1P signaling pathway was functionally linked to phospholipase C via pertussis-toxin-sensitive G protein. Interestingly, at higher S1P concentration (1-30 microM), it also induced cAMP generation in a concentration-dependent manner, which was pertussis toxin insensitive and was mimicked by dihydro-S1P and sphingosylphosphoryl-choline but not by its related metabolites, ceramide and sphingosine, or by its structural analogs, phyto-S1P and lysophosphatidic acid. Suramin, a known inhibitor of ligand-receptor interactions, reduced S1P-induced cAMP generation by 60% of control, whereas forskolin-induced cAMP increase was not affected by treatment with suramin. The S1P-induced cAMP generation was functionally linked to cAMP response element-binding protein phosphorylation. Finally, S1P significantly reduced insulin-induced mRNA of ob gene and leptin secretion, whereas S1P increased glycerol release from adipocytes. Both effects of S1P were reversed by a selective adenylyl cyclase inhibitor, SQ22536, without significantly affecting basal values. In conclusion, extracellular S1P elicits the elevation of cytosolic Ca2+ and cAMP with a distinct concentration dependency, and S1P-induced cAMP generation may be mediated by S1P-selective receptors rather than intracellular targets, and the activated adenylyl cyclase-cAMP signaling pathways subsequently increase lipolysis and decrease insulin-induced leptin production in rat white adipocytes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.