The purpose of this study was to see how a nanohydroxyapatite (n-HA) composite polyamide 66 (PA66) affected the repair of bone defects in diabetics with titanium implants, as well as to develop experimental materials for the creation of the interface between bone tissue and titanium implants. Rabbit bone marrow mesenchymal stem cells (MSCs) were isolated using n-HA/PA66 composite material, and the effect of coculture with the material on cell proliferation was analyzed after induction of mineralization. Bone defect models of diabetic experimental rabbits and titanium implants were prepared. Normal rabbits with bone defects were used as control (NC group, N = 8 ). After the diabetic bone defect (DM group, N = 8 ) and the implantation of n-HA/PA66 composite material (n-HA/PA66 group, N = 8 ), the differences in body weight, blood glucose, scanning electron microscopy of the implant-bone interface, bone mineral density, new bone trabecular parameters, histomorphology, and biomechanical properties of the implant-bone interface were compared and analyzed. In vitro test results showed that MSC cell growth could be promoted by mineralization induction, the cell growth condition was good after coculture with n-HA/PA66, and the proliferation activity of MSCs was not affected by the material. In vivo test results showed that the body weight of the DM group and n-HA/PA66 group was considerably inferior to that of the NC group, and the blood glucose was dramatically superior to that of the NC group ( P < 0.05 ). However, the body weight of the n-HA/PA66 group was dramatically superior to that of the DM group ( P < 0.05 ). The bone mineral density, bone volume fraction (BV/TV), bone surface area fraction (BS/BV), bone trabecular thickness (Tb.Th), bone trabecular number (Tb.N), bone trabecular area, and biomechanical properties in the DM group were considerably inferior to those in the NC group and n-HA/PA66 group ( P < 0.05 ). The trabecular space (Tb.Sp) in the NC group and n-HA/PA66 group was dramatically superior to that in the NC group ( P < 0.05 ). The bone mineral density, BV/TV, BS/BV, Tb.Th, Tb.N, trabecular area, and biomechanical properties of the n-HA/PA66 group were dramatically superior to those of the NC group ( P < 0.05 ), while Tb.Sp was considerably inferior to that of the NC group ( P < 0.05 ). These findings showed that the n-HA/PA66 material had good biocompatibility and minimal cytotoxicity, and that filling the space between the surrounding bone and the titanium implant can enhance bone repair. This research paved the way for future research into the tissue-engineered bone in the field of oral surgery.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.