Modular coral-like fossils from Lower Ordovician (Tremadocian) thrombolitic mounds in the St. George Group of western Newfoundland were initially identified as Lichenaria and thought to include the earliest tabulate corals. They are here assigned to Amsassia terranovensis n. sp. and Amsassia? sp. A from the Watts Bight Formation, and A. diversa n. sp. and Amsassia? sp. B from the overlying Boat Harbour Formation. Amsassia terranovensis n. sp. and A. argentina from the Argentine Precordillera are the earliest representatives of the genus. Amsassia is considered to be a calcareous alga, possibly representing an extinct group of green algae. The genus originated and began to disperse in the Tremadocian, during the onset of the Great Ordovician Biodiversification Event, on the southern margin of Laurentia and the Cuyania Terrane. It inhabited small, shallow-marine reefal mounds constructed in association with microbes. The paleogeographic range of Amsassia expanded in the Middle Ordovician (Darriwilian) to include the Sino-Korean Block, as well as Laurentia, and its environmental range expanded to include non-reefal, open- and restricted-marine settings. Amsassia attained its greatest diversity and paleogeographic extent in the Late Ordovician (Sandbian–Katian), during the culmination of the Great Ordovician Biodiversification Event. Its range included the South China Block, Tarim Block, Kazakhstan, and Siberia, as well as the Sino-Korean Block and Laurentia, and its affinity for small microbial mounds continued during that time. In the latest Ordovician (Hirnantian), the diversity of Amsassia was reduced, its distribution was restricted to non-reefal environments in South China, and it finally disappeared during the end-Ordovician mass extinction. UUID: http://zoobank.org/ef0abb69-10a6-46de-8c78-d6ec7de185fe
Modular coral-like fossils occur in thrombolitic reefal beds at two stratigraphic levels within the Lower Ordovician (Floian) Barbace Cove Member of the Boat Harbour Formation, in the St. George Group of western Newfoundland. They are here assigned to Reptamsassia n. gen.; R. divergens n. gen. n. sp. is present at both levels, whereas a comparatively small-module species, R. minuta n. gen. n. sp., is confined to the upper level. Reptamsassia n. gen. resembles the Ordovician genus Amsassia in its phacelocerioid structure, back-to-back walls of adjoining modules, module increase by longitudinal fission involving infoldings of the wall, tabula-like structures that are continuous with the vertical module wall, and calices with concave-up bottoms. The new genus is differentiated by its encrusting habit, modules with highly variable growth directions and shapes throughout skeletal growth, and modules that may separate slightly or diverge from one another following fission. Together, Amsassia and Reptamsassia n. gen. are considered to represent a distinct group of calcareous algae, the Amsassiaceae n. fam., which possibly belongs to the green algae. The Early Ordovician origination of Amsassia followed by Reptamsassia n. gen. contributed to the beginning of the rise in diversity on a global scale and in reefal settings during the Great Ordovician Biodiversification Event. Reptamsassia minuta n. gen. n. sp. was an obligate symbiont that colonized living areas on its host, R. divergens n. gen. n. sp., with isolated modules of R. divergens n. gen. n. sp. able to persist in the resulting intergrowth with R. minuta n. gen. n. sp. This is the earliest known symbiotic intergrowth of macroscopic modular species, exemplifying the development of ecologic specialization and ecosystem complexity in Early Ordovician reefs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.