This study was designed to develop machine-learning models to predict COVID-19 mortality and identify its key features based on clinical characteristics and laboratory tests. For this, deep-learning (DL) and machine-learning (ML) models were developed using receiver operating characteristic (ROC) area under the curve (AUC) and F1 score optimization of 87 parameters. Of the two, the DL model exhibited better performance (AUC 0.8721, accuracy 0.84, and F1 score 0.76). However, we also blended DL with ML, and the ensemble model performed the best (AUC 0.8811, accuracy 0.85, and F1 score 0.77). The DL model is generally unable to extract feature importance; however, we succeeded by using the Shapley Additive exPlanations method for each model. This study demonstrated both the applicability of DL and ML models for classifying COVID-19 mortality using hospital-structured data and that the ensemble model had the best predictive ability.
Background An artificial-intelligence (AI) model for predicting the prognosis or mortality of coronavirus disease 2019 (COVID-19) patients will allow efficient allocation of limited medical resources. We developed an early mortality prediction ensemble model for COVID-19 using AI models with initial chest X-ray and electronic health record (EHR) data. Results We used convolutional neural network (CNN) models (Inception-ResNet-V2 and EfficientNet) for chest X-ray analysis and multilayer perceptron (MLP), Extreme Gradient Boosting (XGBoost), and random forest (RF) models for EHR data analysis. The Gradient-weighted Class Activation Mapping and Shapley Additive Explanations (SHAP) methods were used to determine the effects of these features on COVID-19. We developed an ensemble model (Area under the receiver operating characteristic curve of 0.8698) using a soft voting method with weight differences for CNN, XGBoost, MLP, and RF models. To resolve the data imbalance, we conducted F1-score optimization by adjusting the cutoff values to optimize the model performance (F1 score of 0.77). Conclusions Our study is meaningful in that we developed an early mortality prediction model using only the initial chest X-ray and EHR data of COVID-19 patients. Early prediction of the clinical courses of patients is helpful for not only treatment but also bed management. Our results confirmed the performance improvement of the ensemble model achieved by combining AI models. Through the SHAP method, laboratory tests that indicate the factors affecting COVID-19 mortality were discovered, highlighting the importance of these tests in managing COVID-19 patients.
Artificial intelligence is a concept that includes machine learning and deep learning. The deep learning model used in this study corresponds to DNN (deep neural network) by utilizing two or more hidden layers. In this study, MLP (multi-layer perceptron) and machine learning models (XGBoost, LGBM) were used. An MLP consists of at least three layers: an input layer, a hidden layer, and an output layer. In general, tree models or linear models using machine learning are widely used for classification. We analyzed our data by applying deep learning (MLP) to improve the performance, which showed good results. The deep learning and ML models showed differences in predictive power and disease classification patterns. We used a confusion matrix and analyzed feature importance using the SHAP value method. Here, we present a protocol to confirm that the use of deep learning can show good performance in disease classification using hospital numerical structured data (laboratory test).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.