Innate immunity is the first line of host defense against invading pathogens, and it is recognized by a variety of pattern recognition molecules, including mannose-binding lectin (MBL). MBL binds to mannose and N-acetylglucosamine residues present on the glycopolymers of microorganisms. Human serum MBL functions as an opsonin and activates the lectin complement pathway. However, which glycopolymer of microorganism is recognized by MBL is still uncertain. Here, we show that wall teichoic acid of Staphylococcus aureus, a bacterial cell surface glycopolymer containing N-acetylglucosamine residue, is a functional ligand of MBL. Whereas serum MBL in adults did not bind to wall teichoic acid because of an inhibitory effect of antiwall teichoic acid antibodies, MBL in infants who had not yet fully developed their adaptive immunity could bind to S. aureus wall teichoic acid and then induced complement C4 deposition. Our data explain the molecular reasons of why MBL-deficient infants are susceptible to S. aureus infection.
Wall teichoic acid (WTA) of Staphylococcus aureus is a major cell envelope-associated glycopolymer that is a key molecule in promoting colonization during S. aureus infection. The complement system plays a key role in the opsonization and clearance of pathogens. We recently reported that S. aureus WTA functions as a ligand of human serum mannose-binding lectin (MBL), a recognition molecule of the lectin complement pathway. Intriguingly, serum MBL in adults does not bind to WTA because of an inhibitory effect of serum anti–WTA-IgG. In this study, serum anti–WTA-IgG was purified to homogeneity using a purified S. aureus WTA-coupled affinity column to examine the biological function of human anti–WTA-IgG. The purified anti–WTA-IgG contained the IgG2 subclass as a major component and specifically induced C4 and C3 deposition on the S. aureus surface in the anti–WTA-IgG–depleted serum, but not in C1q-deficient serum. Furthermore, the anti–WTA-IgG–dependent C3 deposition induced phagocytosis of S. aureus cells by human polymorphonuclear leukocytes. These results demonstrate that serum anti–WTA-IgG is a real trigger for the induction of classical complement-dependent opsonophagocytosis against S. aureus. Our results also support the fact that a lack of the lectin complement pathway in MBL-deficient adults is compensated by Ag-specific, Ab-mediated adaptive immunity.
The objectives of this study were to investigate the immune response to intradermal immunization with wall teichoic acid (WTA) and the effect of MBL deficiency in a murine model of infection with methicillin-resistant Staphylococcus aureus (MRSA). WTA is a bacterial cell wall component that is implicated in invasive infection. We tested susceptibility to MRSA infection in wild type (WT) and MBL deficient mice using two strains of MRSA: MW2, a community-associated MRSA (CA-MRSA); and COL, a healthcare-associated MRSA (HA-MRSA). We also performed in vitro assays to investigate the effects of anti-WTA IgG containing murine serum on complement activation and bacterial growth in whole blood. We found that MBL knockout (KO) mice are relatively resistant to a specific MRSA strain, MW2 CA-MRSA, compared to WT mice, while both strains of mice had similar susceptibility to a different strain, COL HA-MRSA. Intradermal immunization with WTA elicited and augmented an anti-WTA IgG response in both WT and MBL KO mice. WTA immunization significantly reduced susceptibility to both MW2 CA-MRSA and COL HA-MRSA, independent of the presence of MBL. The protective mechanisms of anti-WTA IgG are mediated at least in part by complement activation and clearance of bacteria from blood. The significance of these findings is that 1) Intradermal immunization with WTA induces production of anti-WTA IgG; and 2) This anti-WTA IgG response protects from infection with both MW2 CA-MRSA and COL HA-MRSA even in the absence of MBL, the deficiency of which is common in humans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.