In this study, the ideal alloying element (among Cr, V, and Mo carbides) to enhance the resistance to hydrogen embrittlement (HE) in a tempered martensitic steel was investigated. Four types of steels were designed to contain cementites, Cr-rich M7C3 carbides, V carbides, and Mo carbides, respectively. These steels were tailored to possess a comparable tensile strength (~1.6 GPa). The HE resistances of these steels were evaluated through the slow strain rate test and cyclic corrosion test. The results showed an enhanced HE resistance, characterized by a high notch fracture strength after hydrogen charging, in the samples containing V carbides and Mo carbides. In particular, Mo carbide was regarded as the most ideal alloying element for HE resistance because of the high resistivity parameter, inhibited hydrogen penetration, and suppressed strength loss by internal hydrogen.
The vulnerability of tempered martensitic steel to hydrogen embrittlement (HE) has attracted attention from a number of researchers. Although utilizing carbide precipitation is one of effective methods to improve HE resistance, few studies have focused on the effects of carbide characteristics, such as the chemical composition and morphology of carbide. This work clarifies the role of Mo carbide and V carbide in the HE behavior of tempered martensitic steels with four steels whose chemical composition was carefully controlled. The beneficial effect of carbides is discussed in terms of hydrogen trapping and fracture mode. The low amount of trapped hydrogen and undissolved carbide led to excellent HE resistance of Mo carbides compared to V carbides. In addition, the superior mechanical performance of Cr-Mo steel was also interpreted by the effect of Cr addition as well as Mo carbides.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.