Doubling time has been widely used to represent the growth pattern of cells. A traditional method for finding the doubling time is to apply gray-scaled cells, where the logarithmic transformed scale is used. As an alternative statistical method, the log-linear model was recently proposed, for which actual cell numbers are used instead of the transformed gray-scaled cells. In this paper, I extend the log-linear model and propose the extended log-linear model. This model is designed for extra-Poisson variation, where the log-linear model produces the less appropriate estimate of the doubling time. Moreover, I compare statistical properties of the gray-scaled method, the log-linear model, and the extended log-linear model. For this purpose, I perform a Monte Carlo simulation study with three data-generating models: the additive error model, the multiplicative error model, and the overdispersed Poisson model. From the simulation study, I found that the gray-scaled method highly depends on the normality assumption of the gray-scaled cells; hence, this method is appropriate when the error model is multiplicative with the log-normally distributed errors. However, it is less efficient for other types of error distributions, especially when the error model is additive or the errors follow the Poisson distribution. The estimated standard error for the doubling time is not accurate in this case. The log-linear model was found to be efficient when the errors follow the Poisson distribution or nearly Poisson distribution. The efficiency of the log-linear model was decreased accordingly as the overdispersion increased, compared to the extended log-linear model. When the error model is additive or multiplicative with Gamma-distributed errors, the log-linear model is more efficient than the gray-scaled method. The extended log-linear model performs well overall for all three data-generating models. The loss of efficiency of the extended log-linear model is observed only when the error model is multiplicative with log-normally distributed errors, where the gray-scaled method is appropriate. However, the extended log-linear model is more efficient than log-linear model in this case.
We considered the regression analysis of the event time data with left-, right-, or interval-censored observations. We extended life-table techniques for censored survival data using log-linear models to incorporate interval-censored failures. The EM algorithm was used to calculate maximum likelihood estimates for the parameters. We assumed that the hazard function was a stepwise function over disjoint intervals of time; thus, the nonparametric model, the parametric exponential model, and the semiparametric Cox proportional hazard model were easily implemented as special cases. We adapted the restricted EM algorithm to test hypotheses and to construct confidence intervals for the parameters. These methods were applied in an analysis of the recurrence time for treated melanoma patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.