The Korean government is currently evaluating two alternatives, direct disposal and pyroprocessing, for the disposal of spent nuclear fuel. This paper presents the ranking results of comparing and evaluating direct disposal and pyro-SFR fuel cycle alternatives using multi-criteria decision-making methods such as AHP, TOPSIS, and PROMETHEE. In considering the various evaluation criteria involved in these two alternatives, we aimed to determine the optimal choice in terms of the economic and social conditions of Korea. The evaluation criteria considered were safety, resource availability, environmental impact, economics, nuclear proliferation resistance, and public acceptance. The results show that the pyro-SFR fuel cycle alternative is more advantageous than direct disposal in the AHP and TOPSIS methods, whereas direct disposal is more advantageous in the PROMETHEE method because the ranking is reversed. TOPSIS assigns the ideal value and the most negative value among the input values to each criterion as a parameter reflecting the concept of distance between the best alternative and the worst alternative. In contrast, the PROMETHEE method first selects the preference function including the preference threshold, and calculates the preferred outflow and the preferred inflow for the detailed evaluation indicators. Therefore, differences exist in the methodologies of multi-criteria decision making. Nonetheless, the analysis results of the back-end fuel cycle option can greatly contribute to establishing a nuclear policy for the back-end nuclear fuel cycle, and these efforts will enable sustainable nuclear power generation.
This paper presents the results of various benefit–cost ratio (BCR) analyses of back-end nuclear fuel cycle alternatives. Korea is currently considering two alternatives for the disposal of spent nuclear fuel: direct disposal and pyroprocessing. Each of these two alternatives has advantages and disadvantages. To select one alternative, various evaluation criteria must be considered, since the superior alternative cannot be intuitively selected. A multi-criteria decision-making model can be a good methodology in this case. The analyses of benefit–cost ratios showed that the pyroprocessing alternative was more advantageous than direct disposal when using the results of the AHP and TOPSIS multi-criteria decision-making (MCDM) method. However, when using the results of the PROMETHEE method, the rank was reversed, and direct disposal was more advantageous than the Pyro-SFR fuel cycle. The results of BCR and MCDM can greatly contribute to establishing a nuclear policy for the back-end nuclear fuel cycle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.