Transcranial direct current stimulation (tDCS) is a neuromodulatory technique that delivers a low-intensity direct current to the cortical areas, thereby facilitating or inhibiting spontaneous neuronal activity. This study was designed to examine the changes in various sensory functions after tDCS. A single-center, single-blinded, randomized trial was conducted to determine the effect of a single session (August 4 to August 29) of tDCS with the current perception threshold (CPT) in 50 healthy volunteers. Nerve conduction studies (NCS) were performed in relation to the median sensory and motor nerves on the dominant hand to discriminate peripheral nerve lesions. The subjects received anodal tDCS with 1mA for 15 minutes under two different conditions, with 25 subjects in each group. The conditions were as follows: tDCS on the dorsolateral prefrontal cortex (DLPFC) and sham tDCS on DLPFC. The parameters of the CPT was recorded with a Neurometer ® at frequencies of 2000, 250 and 5 Hz in the dominant index finger to assess the tactile sense, fast pain and slow pain, respectively. In the test to measure the CPT values of the DLPFC in the anodal tDCS group, the values increased significantly in all of 250 and 5 Hz. All CPT values decreased for the sham tDCS. These results showed that DLPFC anodal tDCS can modulate the sensory perception and pain thresholds in healthy adult volunteers. This study suggests that tDCS may be a useful strategy for treating central neurogenic pain in rehabilitation medicine.
1)Transcranial direct current stimulation (tDCS) is a neuromodulatory technique that delivers low-intensity direct current to cortical areas, thereby facilitating or inhibiting spontaneous neuronal activity. This study was designed to investigate changes in various sensory functions after tDCS. We conducted a single-center, single-blinded, randomized trial to determine the effect of a single session of tDCS with the current perception threshold (CPT) in 50 healthy volunteers. Nerve conduction studies were performed in relation to the median sensory and motor nerves on the dominant hand to discriminate peripheral nerve lesions. The subjects received anodal tDCS with 1 ㎃ for 15 minutes under two different conditions, with 25 subjects in each groups: the conditions were as follows tDCS on the primary motor cortex (M1) and sham tDCS on M1. We recorded the parameters of the CPT a with Neurometer Ⓡ at frequencies of 2000, 250, and 5 ㎐ in the dominant index finger to assess the tactile sense, fast pain and slow pain, respectively. In the test to measure CPT values of the M1 in the tDCS group, the values of the distal part of the distal interphalangeal joint of the second finger statistically increased in all of 2000 ㎐ (p=.000), 250 ㎐ (p=.002), and 5 ㎐ (p=.008). However, the values of the sham tDCS group decreased in all of 2000 ㎐ (p=.285), 250 ㎐ (p=.552), and 5 ㎐ (p=.062), and were not statistically significant. These results show that M1 anodal tDCS can modulate sensory perception and pain thresholds in healthy adult volunteers. The study suggests that tDCS may be a useful strategy for treating central neurogenic pain in rehabilitation medicine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.