Prolyl hydroxylase domain protein 2 (PHD2) belongs to an evolutionarily conserved superfamily of 2-oxoglutarate and Fe(II)-dependent dioxygenases that mediates homeostatic responses to oxygen deprivation by mediating hypoxia-inducible factor-1α (HIF-1α) hydroxylation and degradation. Although oxidative stress contributes to the inactivation of PHD2, the precise molecular mechanism of PHD2 inactivation independent of the levels of co-factors is not understood. Here, we identified disulfide bond-mediated PHD2 homo-dimer formation in response to oxidative stress caused by oxidizing agents and oncogenic H-rasV12 signalling. Cysteine residues in the double-stranded β-helix fold that constitutes the catalytic site of PHD isoforms appeared responsible for the oxidative dimerization. Furthermore, we demonstrated that disulfide bond-mediated PHD2 dimerization is associated with the stabilization and activation of HIF-1α under oxidative stress. Oncogenic H-rasV12 signalling facilitates the accumulation of HIF-1α in the nucleus and promotes aerobic glycolysis and lactate production. Moreover, oncogenic H-rasV12 does not trigger aerobic glycolysis in antioxidant-treated or PHD2 knocked-down cells, suggesting the participation of the ROS-mediated PHD2 inactivation in the oncogenic H-rasV12-mediated metabolic reprogramming. We provide here a better understanding of the mechanism by which disulfide bond-mediated PHD2 dimerization and inactivation result in the activation of HIF-1α and aerobic glycolysis in response to oxidative stress.
Extensive studies and patents recently reported in this field suggest that glial inhibitors may soon proceed to clinical trials. However, before glial inhibitors can serve as novel drugs for the treatment of neuroinflammatory disorders, the neurotoxic and neuroprotective effects of glial neuroinflammatory responses need to be better dissected.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.