Inhibition of the angiotensin II type 1 (AT1) receptor in hypertensive patients reverses endothelial dysfunction, measured as an improvement in flow-mediated dilation and fibrinolysis and reduction of oxidant stress and inflammatory cytokines, suggesting that AT1 receptor blocker therapy has antiatherogenic effects.
Mechanisms underlying biological effects of statin and angiotensin-converting enzyme inhibitor therapies differ. Therefore, we compared vascular and metabolic responses to these therapies either alone or in combination in patients with type 2 diabetes. This was a randomized, double-blind, placebo-controlled crossover trial with 3 treatment arms (each 2 months) and 2 washout periods (each 2 months). Fifty patients with type 2 diabetes were given simvastatin 20 mg and placebo, simvastatin 20 mg and ramipril 10 mg, or ramipril 10 mg and placebo daily during each 2-month treatment period. Ramipril alone or combined therapy significantly reduced blood pressure when compared with simvastatin alone. When compared with ramipril alone, simvastatin alone or combined therapy significantly improved the lipoprotein profile. All 3 treatment arms significantly improved flow-mediated dilator response to hyperemia and reduced plasma levels of malondialdehyde relative to baseline measurements. However, these parameters were changed to a greater extent with combined therapy when compared with simvastatin or ramipril alone (P<0.001 by ANOVA). When compared with simvastatin or ramipril alone, combined therapy significantly reduced high-sensitivity C-reactive protein levels (P=0.004 by ANOVA). Interestingly, combined therapy or ramipril alone significantly increased plasma adiponectin levels and insulin sensitivity relative to baseline measurements. These changes were significantly greater than in the group treated with simvastatin alone (P<0.015 by ANOVA). Ramipril combined with simvastatin had beneficial vascular and metabolic effects when compared with monotherapy in patients with type 2 diabetes.
Background-Synthetic, not natural, progestagen may negate the favorable effects of estrogen. Nonetheless, observational studies report no differences in risk for clinical cardiovascular events between users of unopposed estrogen and users of estrogen combined with synthetic progestin. Methods and Results-In a double-blind study, we randomly assigned 20 healthy postmenopausal women to micronized progesterone (MP) 200 mg or medroxyprogesterone acetate (MPA) 10 mg for 10 days with conjugated equine estrogen (CEE) 0.625 mg for 25 days and the remaining 5 days off cyclically during 2 months, followed by crossover to the alternate therapy. CEEϩMP and CEEϩMPA significantly improved the percent flow-mediated dilator response to hyperemia relative to baseline measurements (Pϭ0.004 by ANOVA) by a similar degree (Pϭ0.863).
Muscle-eye-brain disease (MEB), an autosomal recessive disorder prevalent in Finland, is characterized by congenital muscular dystrophy, brain malformation and ocular abnormalities. Since the MEB phenotype overlaps substantially with those of Fukuyama-type congenital muscular dystrophy (FCMD) and Walker-Warburg syndrome (WWS), these three diseases are thought to result from a similar pathomechanism. Recently, we showed that MEB is caused by mutations in the protein O-linked mannose beta1,2-N-acetylglucosaminyltransferase 1 (POMGnT1) gene. We describe here the identification of seven novel disease-causing mutations in six of not only non-Finnish Caucasian but also Japanese and Korean patients with suspected MEB, severe FCMD or WWS. Including six previously reported mutations, the 13 disease-causing mutations we have found thus far are dispersed throughout the entire POMGnT1 gene. We also observed a slight correlation between the location of the mutation and clinical severity in the brain: patients with mutations near the 5' terminus of the POMGnT1 coding region show relatively severe brain symptoms such as hydrocephalus, while patients with mutations near the 3' terminus have milder phenotypes. Our results indicate that MEB may exist in population groups outside of Finland, with a worldwide distribution beyond our expectations, and that the clinical spectrum of MEB is broader than recognized previously. These findings emphasize the importance of considering MEB and searching for POMGnT1 mutations in WWS or other congenital muscular dystrophy patients worldwide.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.