This paper proposes a novel state estimation algorithm, called the distributed Frobenius-norm finite memory interacting multiple model (DFFM-IMM) estimation algorithm, for mobile robot localization in wireless sensor networks (WSNs). The proposed algorithm involves finite memory estimation based on recent finite measurements; such estimation facilitates robust localization in cases of missing measurements and robot kidnapping. Furthermore, the proposed algorithm employs IMM, which facilitates accurate localization if a mobile robot abruptly changes its speed and course. Notably, average-consensus-based distributed processing renders the proposed DFFM-IMM algorithm computationally efficient, and hence, real-time processing for very short sampling times of the WSN is possible. The proposed algorithm's performance is demonstrated by comparing it with a centralized Frobenius-norm finite memory IMM (CFFM-IMM) estimation algorithm and a localization algorithm on the basis of simulations and experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.