Pathogenic microbes rapidly develop resistance to antibiotics. To keep ahead in the “microbial war”, extensive interdisciplinary research is needed. A primary cause of drug resistance is the overuse of antibiotics that can result in alteration of microbial permeability, alteration of drug target binding sites, induction of enzymes that destroy antibiotics (ie., beta-lactamase) and even induction of efflux mechanisms. A combination of chemical syntheses, microbiological and biochemical studies demonstrate that the known critical dependence of iron assimilation by microbes for growth and virulence can be exploited for the development of new approaches to antibiotic therapy. Iron recognition and active transport relies on the biosyntheses and use of microbe-selective iron-chelating compounds called siderophores. Our studies, and those of others, demonstrate that siderophores and analogs can be used for iron transport-mediated drug delivery (“Trojan Horse” antibiotics) and induction of iron limitation/starvation (Development of new agents to block iron assimilation). Recent extensions of the use of siderophores for the development of novel potent and selective anticancer agents are also described.
Sphingosine 1-phosphate lyase (S1PL) has been characterized as a novel target for the treatment of autoimmune disorders using genetic and pharmacological methods. Medicinal chemistry efforts targeting S1PL by direct in vivo evaluation of synthetic analogues of 2-acetyl-4(5)-(1(R),2(S),3(R),4-tetrahydroxybutyl)-imidazole (THI, 1) led to the discovery of 2 (LX2931) and 4 (LX2932). The immunological phenotypes observed in S1PL deficient mice were recapitulated by oral administration of 2 or 4. Oral dosing of 2 or 4 yielded a dose-dependent decrease in circulating lymphocyte numbers in multiple species and showed a therapeutic effect in rodent models of rheumatoid arthritis (RA). Phase I clinical trials indicated that 2, the first clinically studied inhibitor of S1PL, produced a dose-dependent and reversible reduction of circulating lymphocytes and was well tolerated at dose levels of up to 180 mg daily. Phase II evaluation of 2 in patients with active rheumatoid arthritis is currently underway.
SummaryThe antibiotic-resistance characteristics of bacterial strains in antibiotic production wastewater treatment plants (WWTP) that contain high concentrations of antibiotics are unknown, as are the environmental effects of the discharge of wastewater from such facilities. In this study, 417 strains were individually isolated from the effluent of a WWTP that treated penicillin G production wastewater, as well as from downstream and upstream areas of the receiving river. The minimum inhibition concentrations (MICs) of 18 antibiotics representing seven classes were then determined for each of these strains. Relatively high similarity in the bacterial composition existed between the wastewater and downstream river samples when compared with the upstream sample. High resistance ratios and MIC values were observed for almost all antibiotics in wastewater isolates, followed by strains from downstream river, of which the resistance ratios and levels were still significantly higher than those of upstream strains. The resistance ratios and levels also significantly differed among strains belonged to different species in the penicillin production wastewater effluent and downstream river. In both samples, the resistances to b-lactam antibiotics were more frequent, with much higher levels, than the other class antibiotics. Then five clinically important resistant genes mainly coding for extended-spectrum b-lactamases (ESBLs) were determined for all strains, only bla TEM-1 which did not belong to ESBL was detected in 17.3% and 11.0% of strains isolated from wastewater and downstream river respectively. Class I integrons were detected in 14% of wastewater isolates and 9.1% of downstream isolates, and primarily contained gene cassettes conferring resistance to aminoglycoside antibiotics. The unexpectedly high levels of multiple antibiotic resistance in strains from wastewater and downstream river were speculated to be mainly due to multidrug efflux systems.
The coordination chemistry of an extracellular siderophore produced by Mycobacterium neoaurum, exochelin MN (ExoMN), is reported along with its pK(a) values, Fe(III) and Fe(II) chelation constants, and aqueous solution speciation as determined by spectrophotometric and potentiometric titration techniques. Exochelin MN is of particular interest as it can efficiently transport iron into pathogenic M. leprae, which is responsible for leprosy, in addition to its own parent cells. The Fe(III) coordination properties of ExoMN are important with respect to understanding the Fe(III) acquisition and uptake mechanism in pathogenic M. leprae, as the siderophores from this organism are very difficult to isolate. Exochelin MN has two hydroxamic acid groups and an unusual threo-beta-hydroxy-l-histidine available for Fe(III) chelation. The presence of threo-beta-hydroxy-l-histidine gives rise to a unique mode of Fe(III) coordination. The pK(a) values for the two hydroxamic acid moieties, the histidine imidazole ring and the alkylammonium groups on ExoMN, correspond well with the literature values for these moieties. Proton-dependent Fe(III)- and Fe(II)-ExoMN equilibrium constants were determined using a model involving sequential protonation of the Fe(III)- and Fe(II)-ExoMN complexes. These data were used to develop a model whereby deprotonation reactions on the surface of the complex in the second coordination shell result in first coordination shell isomerization. The overall formation constants were calculated: log beta(110) = 39.12 for Fe(III)-ExoMN and 16.7 for Fe(II)-ExoMN. The calculated pFe value of 31.1 is one of the highest among all siderophores and their synthetic analogues and indicates that ExoMN is thermodynamically capable of removing Fe(III) from transferrin. The E(1/2) for the Fe(III)ExoMN/Fe(II)ExoMN(-) couple was determined to be -595 mV from quasi-reversible cyclic voltammograms at pH = 10.8, and the pH-dependent E(1/2) profile was used to determine the Fe(II)-ExoMN protonation constants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.