Two C-nucleosides are employed for the recognition of dC-dG base pairs. Both derivatives are related to dC but lack the O2-carbonyl. The absence of the carbonyl should eliminate any unfavorable steric interactions at this site. One of the derivatives contains a 2-aminopyridine heterocycle (d2APy) while the second contains a 2-aminopyrimidine heterocycle (d2APm). The former with a pK(a) of 6. 8 functions better for the recognition of dG-dC base pairs than it does in the binding to dC-dG base pairs. The d2APm derivative with a pK(a) of 3.3 functions better to form base triplets with dC-dG base pairs than with dG-dC targets. Triplex T(m)'s in both cases are compared with the sequence containing the native dC residue. The dC analogues appear to make two hydrogen bonds to a target dG base residue, one of which requires protonation of the ring nitrogen. Recognition of a target dC residue appears to require the formation of a single hydrogen bond to the C-nucleoside and having that nitrogen largely in the unprotonated state facilitates its formation.
Bacteriophage T7 primase catalyzes the synthesis of the oligoribonucleotides pppACC(C/A) and pppACAC from the single-stranded DNA template sites 3'-d[CTGG(G/T)]-5' and 3'-(CTGTG)-5', respectively. The 3'-terminal deoxycytidine residue is conserved but noncoding. A series of nucleoside analogues have been prepared and incorporated into the conserved 3'-d(CTG)-5' site, and the effects of these analogue templates on T7 primase activity have been examined. The nucleosides employed include a novel pyrimidine derivative, 2-amino-5-(beta-2-deoxy-D-erythro-pentofuranosyl)pyridine (d2APy), whose synthesis is described. Template sites containing d2APy in place of the cryptic dC support oligoribonucleotide synthesis whereas those containing 3-deaza-2'-deoxycytidine (dc(3)C) and 5-methyl-6-oxo-2'-deoxycytidine (dm(5ox)C) substitutions do not, suggesting that the N3 nitrogen of cytidine is used for a critical interaction by the enzyme. Recognition sites containing 4-amino-1-(beta-2-deoxy-D-erythro-pentofuranosyl)-5-methyl-2,6[1H, 3H]-pyrimidione (dm(3)2P) or 2'-deoxyuridine (dU) substitutions for dT support oligoribonucleotide synthesis whereas those containing 5-methyl-4-pyrimidinone 2'-deoxyriboside (d(2H)T) substitutions do not, suggesting the importance of Watson-Crick interactions at this template residue. Template sites containing 7-deaza-2'-deoxyguanosine (dc(7)G) or 2'-deoxyinosine (dI) in place of dG support oligoribonucleotide synthesis. The reduced extent to which dc(7)G is successful within the template suggests a primase-DNA interaction. Inhibition studies suggest that the primase enzyme binds "null" substrates but cannot initiate RNA synthesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.