Determining the role of rumen microbes and their enzymes in plant polysaccharide breakdown is fundamental to understanding digestion and maximising productivity in ruminant animals. Butyrivibrio proteoclasticus B316T is a Gram-positive, butyrate-forming rumen bacterium with a key role in plant polysaccharide degradation. The 4.4Mb genome consists of 4 replicons; a chromosome, a chromid and two megaplasmids. The chromid is the smallest reported for all bacteria, and the first identified from the phylum Firmicutes. B316 devotes a large proportion of its genome to the breakdown and reassembly of complex polysaccharides and has a highly developed glycobiome when compared to other sequenced bacteria. The secretion of a range of polysaccharide-degrading enzymes which initiate the breakdown of pectin, starch and xylan, a subtilisin family protease active against plant proteins, and diverse intracellular enzymes to break down oligosaccharides constitute the degradative capability of this organism. A prominent feature of the genome is the presence of multiple gene clusters predicted to be involved in polysaccharide biosynthesis. Metabolic reconstruction reveals the absence of an identifiable gene for enolase, a conserved enzyme of the glycolytic pathway. To our knowledge this is the first report of an organism lacking an enolase. Our analysis of the B316 genome shows how one organism can contribute to the multi-organism complex that rapidly breaks down plant material in the rumen. It can be concluded that B316, and similar organisms with broad polysaccharide-degrading capability, are well suited to being early colonizers and degraders of plant polysaccharides in the rumen environment.
Malignant gliomas (MGs) are among the most aggressive types of cancers in the human brain. Frequent tumor recurrence caused by a lack of effective therapeutic approaches results in a poor prognosis. Signal transducer and activator of transcription 3 (STAT3), an oncogenic protein, is constitutively activated in MGs and predicts a poor clinical outcome. STAT3 therefore is considered to be a promising target for the treatment of MGs. Cryptotanshinone (CTS), the main bioactive compound from the root of Salvia miltiorrhiza Bunge, has been reported to have various pharmacological effects. However, little is known about its function in MG cells. In this study, we evaluated the effect of CTS on the proliferation of human glioma cell lines (T98G and U87). Our results revealed that CTS significantly suppresses glioma cell proliferation. The phosphorylation of STAT3 Tyr705, but not Ser727, was inhibited by CTS, and STAT3 nuclear translocation was attenuated. Overexpression of constitutively active mutant STAT3C reversed the inhibitory effect of CTS, while knockdown STAT3 showed a similar inhibitory effect as CTS treatment. Following the downregulation of STAT3-regulated proteins cyclinD1 and survivin, cell cycle progression significantly arrested in G1/G0 phase. These results indicate that CTS may be a potential antiproliferation agent for the treatment of MGs and that its mechanism may be related to the inhibition of STAT3 signaling.
Breast cancer remains the leading cause of cancer mortality in females, and about 70% of the primary breast cancer patients are diagnosed ERa-positive, which is the most common type of breast cancer. MicroRNA-34a (miR-34a) has been shown to be a master regulator of tumor suppression in many types of cancers including breast cancer. However, the role of miR-34a in ERa-positive breast cancer has not been elucidated. Here, we find that in MCF-7, which is an ERa-positive breast cancer cell line, miR-34a is remarkably downregulated after E2 treatment. Overexpression of miR-34a by lentivirus suppresses cell proliferation, S phase ratio, and tumor formation in an E2-dependent manner in vitro. According to the mRNA sequence, lemur tyrosine kinase 3 (LMTK3), which is an important regulator of estrogen receptor alpha (ERa), is a predicted target of miR-34a. This is confirmed by dual luciferase reporter assay and the decrease of LMTK3 mRNA and protein levels after overexpression of miR-34a. Moreover, miR-34a overexpression decreases AKT signaling pathway and increases ERa phosphorylation status. Taken together, these results suggest that miR-34a inhibits breast cancer proliferation by targeting LMTK3 and might be used as an anti-ERa agent in breast cancer therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.