Biocompatible and biodegradable poly(butylene succinate-co-adipate) (PBSA)/hexadecylamine-modified PPZn (m-PPZn) nanocomposites were prepared using a melt mixing process. Experimental results of wide-angle X-ray diffraction and transmission electron microscopy revealed that the stacking layers of the m-PPZn were partially intercalated and partially exfoliated into the PBSA polymer matrix. The isothermal crystallization kinetics of PBSA/m-PPZn nanocomposites were studied at the temperature range of 62−70 °C and the half-time for crystallization of 3 wt % PBSA/m-PPZn nanocomposite was reduced by 27−35% compared with that of pure PBSA. This finding suggests that the incorporation of m-PPZn might cause the heterogeneous nucleation and the subsequent crystallization growth, which enhances the isothermal crystallization rate of PBSA/m-PPZn nanocomposite. The biodegradation rates of PBSA using Lipase from Pseudomonas sp. increase as the contents of m-PPZn increase. The degradation behavior of the neat PBSA investigated using the change of weight-average molecular weight belongs to exo-type hydrolysis activity. It is necessary to point out that the change of degree of crystallinity and degradation rate are almost linearly proportional to the loading of hexadecylamine-modified PPZn. This finding would provide an important information for the manufacturing biodegradable PBSA nanocomposites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.