AbstractWe consider an elliptic variational-hemivariational inequality 𝓟 in a reflexive Banach space, governed by a set of constraints K, a nonlinear operator A, and an element f. We associate to this inequality a sequence {𝓟n} of variational-hemivariational inequalities such that, for each n ∈ ℕ, inequality 𝓟n is obtained by perturbing the data K and A and, moreover, it contains an additional term governed by a small parameter εn. The unique solvability of 𝓟 and, for each n ∈ ℕ, the solvability of its perturbed version 𝓟n, are guaranteed by an existence and uniqueness result obtained in literature. Denote by u the solution of Problem 𝓟 and, for each n ∈ ℕ, let un be a solution of Problem 𝓟n. The main result of this paper states the strong convergence of un → u in X, as n → ∞. We show that the main result extends a number of results previously obtained in the study of Problem 𝓟. Finally, we illustrate the use of our abstract results in the study of a mathematical model which describes the contact of an elastic body with a rigid-deformable foundation and provide the corresponding mechanical interpretations.
We consider a mixed variational problem governed by a nonlinear operator and a set of constraints. Existence, uniqueness and convergence results for this problem have already been obtained in the literature. In this current paper we complete these results by proving the well-posedness of the problem, in the sense of Tykhonov. To this end we introduce a family of approximating problems for which we state and prove various equivalence and convergence results. We illustrate these abstract results in the study of a frictionless contact model with elastic materials. The process is assumed to be static and the contact is with unilateral constraints. We derive a weak formulation of the model which is in the form of a mixed variational problem with unknowns being the displacement field and the Lagrange multiplier. Then, we prove various results on the corresponding mixed problem, including its well-posedness in the sense of Tykhonov, under various assumptions on the data. Finally, we provide mechanical interpretation of our results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.