Recent advances of untethered microrobots, which navigate the complex regions in vivo for therapeutics, have presented promising multiple applications on future healthcare. Microrobots used for active drug delivery system (DDS) have been demonstrated for advanced targeting distribution, improved delivery efficiency, and reduced systemic side effects. In this review, the therapeutic benefits of active DDS are presented compared to the traditional passive DDS, which illustrate the historical reasons for choosing active DDS. An integrated 5D radar chart analysis model containing the core capabilities of the active DDS is innovatively proposed. It would be a practical tool for measurement and mapping of the field of active delivery, followed by the evolutions and bottlenecks of each technical module. The comprehensive consideration of microrobots before clinical application is also discussed from the aspects of robot ethics, dosage, quality control and stability control in actual production. Gastrointestinal and blood administration, as two major clinical scenes of drug delivery, are discussed in detail as examples of the potential bedside applications of active DDS. Finally, combined with the reported analysis model, the current status and future outlook from the translation prospect to the clinical scenes of microrobots are provided.
The recently demonstrated approach of grafting n-type GaN with p-type Si or GaAs, by employing ultrathin Al2O3 at the interface, has shown the feasibility to overcome the poor p-type doping challenge of GaN. However, the surface band-bending of GaN that could be influenced by the Al2O3 has been unknown. In this work, the band-bending of c-plane, Ga-face GaN with ultrathin Al2O3 deposition at the surface of GaN was studied using X-ray photoelectron spectroscopy (XPS). The study shows that the Al2O3 can help suppress the upward band-bending of the c-plane, Ga-face GaN with a monotonic reduction trend from 0.48 eV down to 0.12 eV as the number of Al2O3 deposition cycles increases from 0 to 20. The study further shows that the band-bending can be mostly recovered after removing the Al2O3 layer, concurring that the introduction of ultrathin Al2O3 is the main reason for the surface band-bending modulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.