In this paper, we are interested in the human pose estimation problem with a focus on learning reliable highresolution representations. Most existing methods recover high-resolution representations from low-resolution representations produced by a high-to-low resolution network. Instead, our proposed network maintains high-resolution representations through the whole process.We start from a high-resolution subnetwork as the first stage, gradually add high-to-low resolution subnetworks one by one to form more stages, and connect the mutliresolution subnetworks in parallel. We conduct repeated multi-scale fusions such that each of the high-to-low resolution representations receives information from other parallel representations over and over, leading to rich highresolution representations. As a result, the predicted keypoint heatmap is potentially more accurate and spatially more precise. We empirically demonstrate the effectiveness of our network through the superior pose estimation results over two benchmark datasets: the COCO keypoint detection dataset and the MPII Human Pose dataset. In addition, we show the superiority of our network in pose tracking on the PoseTrack dataset. The code and models have been publicly available at https://github.com/leoxiaobin/ deep-high-resolution-net.pytorch.
High-resolution representations are essential for position-sensitive vision problems, such as human pose estimation, semantic segmentation, and object detection. Existing state-of-the-art frameworks first encode the input image as a low-resolution representation through a subnetwork that is formed by connecting high-to-low resolution convolutions in series (e.g., ResNet, VGGNet), and then recover the high-resolution representation from the encoded low-resolution representation. Instead, our proposed network, named as High-Resolution Network (HRNet), maintains high-resolution representations through the whole process. There are two key characteristics: (i) Connect the high-to-low resolution convolution streams in parallel; (ii) Repeatedly exchange the information across resolutions. The benefit is that the resulting representation is semantically richer and spatially more precise. We show the superiority of the proposed HRNet in a wide range of applications, including human pose estimation, semantic segmentation, and object detection, suggesting that the HRNet is a stronger backbone for computer vision problems. All the codes are available at https://github.com/HRNet. ! 1 INTRODUCTION D EEP convolutional neural networks (DCNNs) have achieved state-of-the-art results in many computer vision tasks, such as image classification, object detection, semantic segmentation, human pose estimation, and so on. The strength is that DCNNs are able to learn richer representations than conventional hand-crafted representations. Most recently-developed classification networks, including AlexNet [59], VGGNet [101], GoogleNet [108], ResNet [39], etc., follow the design rule of LeNet-5 [61]. This is depicted in Figure 1 (a): gradually reduce the spatial size of the feature maps, connect the convolutions from high resolution to low resolution in series, and lead to a low-resolution representation, which is further processed for classification.High-resolution representations are needed for positionsensitive tasks, e.g., semantic segmentation, human pose estimation, and object detection. The previous state-of-the-art methods adopt the high-resolution recovery process to raise the representation resolution from the low-resolution representation outputted by a classification or classification-like network as depicted in Figure 1 (b), e.g., Hourglass [83], Seg-Net [3], DeconvNet [85], U-Net [95], SimpleBaseline [124], and encoder-decoder [90]. In addition, dilated convolutions are used to remove some down-sample layers and thus yield medium-resolution representations [15], [144].We present a novel architecture, namely High-Resolution Net (HRNet), which is able to maintain high-resolution representations through the whole process. We start from a highresolution convolution stream, gradually add high-to-low resolution convolution streams one by one, and connect the multi-resolution streams in parallel. The resulting network • J. Wang is with Microsoft Research,
In the rat, variations in maternal care appear to influence the development of behavioral and endocrine responses to stress in the offspring. The results of cross-fostering studies reported here provide evidence for (i) a causal relationship between maternal behavior and stress reactivity in the offspring and (ii) the transmission of such individual differences in maternal behavior from one generation of females to the next. Moreover, an environmental manipulation imposed during early development that alters maternal behavior can then affect the pattern of transmission in subsequent generations. Taken together, these findings indicate that variations in maternal care can serve as the basis for a nongenomic behavioral transmission of individual differences in stress reactivity across generations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.