A microcapsule-type self-healing protective coating with secondary crack preventing capability has been developed using a silanol-terminated polydimethylsiloxane (STP)/dibutyltin dilaurate (DD) healing agent. STP undergoes condensation reaction in the presence of DD to give a viscoelastic substance. STP- and DD-containing microcapsules were prepared by in-situ polymerization and interfacial polymerization methods, respectively. The microcapsules were characterized by Fourier-transform infrared (FT-IR) spectroscopy, optical microscopy, and scanning electron microscopy (SEM). The microcapsules were integrated into commercial enamel paint or epoxy coating formulations, which were applied on silicon wafers, steel panels, and mortar specimens to make dual-capsule self-healing protective coatings. When the STP/DD-based coating was scratched, self-healing of the damaged region occurred, which was demonstrated by SEM, electrochemical test, and water permeability test. It was also confirmed that secondary crack did not occur in the healed region upon application of vigorous vibration to the self-healing coating.
Linseed oil undergoes an oxidative drying reaction upon exposure to air, resulting in a soft film. The reaction conversion after 48 h reached 88% and 59% when it reacted at room temperature and −20 °C, respectively. Linseed-oil-loaded microcapsules were prepared using a urea-formaldehyde polymer as the shell wall material. The microcapsules were integrated into a commercially available protective coating formulation to prepare self-healing coating formulations with different capsule loadings. The coating formulations were applied on mortar specimens to prepare self-healing coatings. The effect of capsule loading on adhesion strength of the self-healing coating was studied. The self-healing function of the coating was investigated by SEM, a water sorptivity test and an accelerated carbonation test. Successful self-healing was demonstrated for both scratch and crack damage in the coatings. Low-temperature self-healing was demonstrated with a saline solution sorptivity test conducted at −20 °C. The linseed-oil-based microcapsule-type self-healing coating system is a promising candidate as a protective coating for cementitious materials.
Polyimide films have conventionally been prepared by thermal imidization of poly(amic acid)s (PAAs). Here we report that the improvement of tensile strength while increasing (or maintaining) film flexibility of polyimide films was accomplished by simple microwave (MW) irradiation of the PAAs. This improvement in mechanical properties can be attributed to the increase in molecular weight of the polyimides by MW irradiation. Our results show that the mechanical properties of polyimide films can be improved by MW irradiation, which is a green approach that requires relatively low MW power, very short irradiation time, and no incorporation of any additional inorganic substance.
Although self-healing protective coatings have been widely studied, systematic research on healing performance of the coating according to damage width has been rare. In addition, there has been rare reports of self-healing of the protective coating having damage width wider than 100 µm. In this study, self-healing performance of a microcapsule type self-healing protective coating on cement mortar was studied for the coating with damage width of 100–300 µm. The effect of capsule-loading (20 wt%, 30 wt% and 40 wt%), capsule size (65-, 102- and 135-µm-mean diameter) and coating thickness (50-, 80- and 100-µm-thick undercoating) on healing efficiency was investigated by water sorptivity test. Accelerated carbonation test, chloride ion penetration test and scanning electron microscope (SEM) study were conducted for the self-healing coating with a 300-µm-wide damage. Healing efficiency of the self-healing coating decreased with increasing damage width. As capsule-loading, capsule size or coating thickness increased, healing efficiency of the self-healing coating increased. Healing efficiency of 76% or higher was achieved using the self-healing coating with a 300-µm-wide scratch. The self-healing coating with a 200-µm-wide crack showed healing efficiency of 70% or higher. The self-healing coating having a 300-µm-wide scratch showed effective protection of the substrate mortar from carbonation and chloride ion penetration, which was supported by SEM study.
Pyromellitic dianhydride (PMDA) and 4,4′-oxydianiline (ODA) oligoimide particles and PMDA-ODA poly(amic acid) salt (PAAS) were synthesized and used as stabilizers to prepare oil-in-water Pickering high internal phase emulsions (HIPEs). The stability of the Pickering HIPEs was investigated by dispersion stability analysis. Polyimide-based polyHIPEs could be prepared through freeze-drying and subsequent thermal imidization of the Pickering HIPEs. The characteristics of the polyHIPEs, including their morphology, porosity, thermal decomposition temperature, and compression modulus, were investigated. The thermal decomposition temperature (T10) of the polyHIPEs was very high (>530 °C), and their porosity was as high as 92%. The polyimide-based polyHIPEs have the potential to be used in high-temperature environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.