The linear-stability analysis of thermocapillary flow in the annular immiscible two-layer system of 5cSt silicone oil and HT-70 with a radial temperature gradient was carried out. The annular two-layer system is heated at the outer cylindrical wall and cooled at the inner wall, the bottom and top surfaces are bounded by two rigid and heat-insulated walls. The influences of the liquid layer depth and radius ratio between the cold inner wall and the hot outer wall on stability are thoroughly investigated. The critical Marangoni number, critical wave number and critical phase velocity are obtained. In addition, the mode of bifurcation for the hydrothermal wave is predicted at different liquid layer depth, and the temperature disturbance pattern of hydrothermal wave at interface is also exhibited.
In order to investigate the energy transfer mechanism and the nonequilibrium effect during water evaporation in its own pure vapor at low pressures, a series of precise measurements are conducted to obtain the temperature profile near the liquid−vapor interface and the evaporation rates in an annular pool in a closed chamber. The results show that the interface temperature of the vapor side is higher than that of the liquid side when water evaporates in its own pure vapor at low pressures (ranging from 394 to 1467 Pa), the temperature discontinuity across the interface exists in all experimental conditions. The magnitude of the temperature discontinuity is strongly affected by the vapor pressure. A uniform temperature layer with a thickness of about 2 mm is found below the evaporating interface because of the coupling effect of evaporation cooling and thermocapillary convection. The energy required for evaporation is mainly transferred by thermocapillary convection in the uniform temperature layer. Furthermore, the numerical simulation results confirm that the evaporation flux near the cylinders is much larger than that at the middle region, which implies that most of the latent heat required for evaporation is transferred to the interface near the cylinders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.