The flash point is one of the most important physical properties used to determine the potential for fire and explosion hazards of industrial materials. The purpose of this study was to measure and predict the lower flash points for the binary mixtures to aid in evaluating the safety of flammable liquid mixtures. The lower flash points for the flammable binary systems, n-hexanol+propionic acid, n-butyric acid+m-xylene and n-pentanol+n-butanol, were measured by Setaflash closed cup tester. The experimentally derived data were correlated with the Wilson and UNIQUAC (UNIversal QUuasi Chemical) equations using the binary interaction parameters. Both equations correlated with a good accuracy.
For the safe handling of n-hexadecane, the lower flash points and the upper flash point, fire point, AITs(auto-ignition temperatures) by ignition delay time were experimented. Also lower and upper explosion limits by using measured the lower and upper flash points for n-hexadecane were calculated. The lower flash points of n-hexadecane by using the Setaflash and the Pensky-Martens closed testers were measured 128 ℃ and 126 ℃, respectively. The lower flash points of the Tag and the Cleveland open cup testers were measured 136 ℃ and 132 ℃, respectively. The fire points of the Tag and the Cleveland open cup testers were measured 144 ℃. respectively. This study measured relationship between the AITs and the ignition delay times by using ASTM E659 apparatus for n-hexadecane. The experimental AIT of n-hexadecane was 200 ℃. The calculated lower and upper explosion limit by using measured lower 128 ℃ and upper flash point 180 ℃ for n-hexadecane were 0.
요 약화재 및 폭발 방호를 위해서 문헌에서의 최소자연발화온도 값을 사용하는 것이 일반적이다. 본 연구에서, n-Propanol+n-Octane 계의 최소자연발화온도는 ASTM E659 장치를 이용하여 발화지연시간으로부터 측정하였 다. 2성분계를 구성하는 n-Propanol과 n-Octane의 측정된 최소자연발화온도는 각 각 435℃와 218℃ 였다. 그리고 두 개의 2성분계에서 측정된 발화지연시간은 제시된 식에 의한 예측된 발화지연시간과 적은 평균절대오차에서 일치하였다.Abstract -The lowest values of the AITs(Autoignition temperatures) in the literature were normally used fire and explosion protection. In this study, the AITs of n-Propanol+n-Octane system were measured from ignition delay time(time lag) by using ASTM E659 apparatus. The AITs of n-Propanol and n-Octane which constituted binary systems were 435℃ and 218℃, respectively. The experimental ignition delay time of n-Propanol+n-Octane system were a good agreement with the calculated ignition delay time by the proposed equations with a few A.A.D.(average absolute deviation).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.