SummaryThe core functions of stem cells (SCs) are critically regulated by their cellular redox status. Glutathione is the most abundant non-protein thiol functioning as an antioxidant and a redox regulator. However, an investigation into the relationship between glutathione-mediated redox capacity and SC activities is hindered by lack of probe. Here, we demonstrate that cyanoacrylamide-based coumarin derivatives are ratiometric probes suitable for the real-time monitoring of glutathione levels in living SCs. These probes revealed that glutathione levels are heterogeneous among subcellular organelles and among individual cells and show dynamic changes and heterogeneity in repopulating SCs depending on oxidative stress or culture conditions. Importantly, a subpopulation of SCs with high glutathione levels exhibited increased stemness and migration activities in vitro and showed improved therapeutic efficiency in treating asthma. Our results indicate that high glutathione levels are required for maintaining SC functions, and monitoring glutathione dynamics and heterogeneity can advance our understanding of the cellular responses to oxidative stress.
The expression of hypoxia-inducible factor-1 (HIF-1) correlates with poor clinical outcomes and confers resistance to the apoptosis of the tumor cells that are exposed to hypoxia. Presently, the mechanism underlying this phenomenon is poorly understood. In this study we provide evidence that transglutaminase 2 (TG2), an enzyme that catalyses protein crosslinking reactions, is a transcriptional target of HIF-1 to enhance the survival of hypoxic cells. We found that hypoxia induces TG2 expression through an HIF-1 dependent pathway and concurrently activates intracellular TG2. The hypoxic cells overexpressing TG2 showed resistance to apoptosis. Conversely, the hypoxic cells treated with either TG2 inhibitor or small interfering RNA (siRNA) became sensitive to apoptosis. Activation of TG2 in response to hypoxic stress inhibited caspase-3 activity by forming crosslinked multimer, resulting in insoluble aggregates. TG2 also activates nuclear factor (NF)-jB pathway after hypoxic stress, and thereby induces the expression of cellular inhibitor of apoptosis 2. The anti-apoptotic role of TG2 was further confirmed in vivo using xenografts in athymic mice. Our results indicate that TG2 is an antiapoptotic mediator of HIF-1 through modulating both apoptosis and survival pathways and may confer a selective growth advantage to tumor cells. These findings suggest that the inhibition of TG2 may offer a novel strategy for anticancer therapy.
Inhibition of transglutaminase 2 reduces bleomycin-induced epithelial cell release of interleukin 6 in vitro and pulmonary inflammation and fibrosis in vivo.
Transglutaminase (TGase) 2 is a ubiquitously expressed enzyme that modifies proteins by cross-linking or polyamination. An aberrant activity of TGase 2 has implicated its possible roles in a variety of diseases including age-related cataracts. However, the molecular mechanism by which TGase 2 is activated has not been elucidated. In this report, we showed that oxidative stress or UV irradiation elevates in situ TGase 2 activity. Neither the expression level nor the in vitro activity of TGase 2 appeared to correlate with the observed elevation of in situ TGase 2 activity. Screening a number of cell lines revealed that the level of TGase 2 activation depends on the cell type and also the environmental stress, suggesting that unrecognized cellular factor(s) may specifically regulate in situ TGase 2 activity. Concomitantly, we observed that human lens epithelial cells (HLE-B3) exhibited about 3-fold increase in in situ TGase 2 activity in response to the stresses. The activated TGase 2 catalyzed the formation of water-insoluble dimers or polymers of ␣B-crystallin, B 2 -crystallin, and vimentin in HLE-B3 cells, providing evidence that TGase 2 may play a role in cataractogenesis. Thus, our findings indicate that in situ TGase 2 activity must be evaluated instead of in vitro activity to study the regulation mechanism and function of TGase 2 in biological and pathological processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.