The drawing textures of aluminum, copper, gold, silver, and Cu-7.3% Al bronze wires are approximated by major <111>+minor <100>, except silver wire, which can have the <100> texture at extremely high reductions. The <111> component in the drawing textures of aluminum, copper, gold, and silver transform to the <100> component after recrystallization. On the other hand, the <111> deformation texture of the Cu-7.3% Al bronze wire, which has very low stackingfault- energy, remains unchanged after recrystallization. The Brass component {110}<112> in rolling textures of high stacking-fault-energy metals such as aluminum and copper alloys changes to the Goss orientation {110}<001> after recrystallization. However, the Brass orientation in rolling textures of low stacking-fault-energy fcc metals such as brass appears to change to the {236}<385> orientation after recrystallization. These results seem to be related to the stability of dislocations during annealing.
The drawing textures of aluminum, copper, gold, silver, and Cu-7.3% Al bronze wires are approximated by major <111>+minor <100>, except silver wire, which can have the <100> texture at extremely high reductions. The <111> component in the drawing textures of aluminum, copper, gold, and silver transform to the <100> component after recrystallization. On the other hand, the <111> deformation texture of the Cu-7.3% Al bronze wire, which has very low stackingfault- energy, remains unchanged after recrystallization. The <100> + <111> recrystallization textures change to the <111> texture after abnormal grain growth. The Brass component {110}<112> in rolling textures of high stacking-fault-energy metals such as aluminum, copper, Cu- 16% Mn, and Cu-1% P changes to the Goss orientation {110}<001> after recrystallization. However, the Brass orientation in rolling textures of low stacking-fault-energy fcc metals such as brass and silver appears to change to an orientation approximated by the {236}<385> orientation after annealing. The texture changes are discussed based on the strain-energy-release-maximization model for medium to high stacking-fault-energy metals and on grain growth for low stacking-fault energy metals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.