Although airway epithelial cells provide important barrier and host defense functions, a crucial role for these cells in development of acute lung inflammation and injury has not been elucidated. We investigated whether NF-κB pathway signaling in airway epithelium could decisively impact inflammatory phenotypes in the lungs by using a tetracycline-inducible system to achieve selective NF-κB activation or inhibition in vivo. In transgenic mice that express a constitutively active form of IκB kinase 2 under control of the epithelial-specific CC10 promoter, treatment with doxycycline induced NF-κB activation with consequent production of a variety of proinflammatory cytokines, high-protein pulmonary edema, and neutrophilic lung inflammation. Continued treatment with doxycycline caused progressive lung injury and hypoxemia with a high mortality rate. In contrast, inducible expression of a dominant inhibitor of NF-κB in airway epithelium prevented lung inflammation and injury resulting from expression of constitutively active form of IκB kinase 2 or Escherichia coli LPS delivered directly to the airways or systemically via an osmotic pump implanted in the peritoneal cavity. Our findings indicate that the NF-κB pathway in airway epithelial cells is critical for generation of lung inflammation and injury in response to local and systemic stimuli; therefore, targeting inflammatory pathways in airway epithelium could prove to be an effective therapeutic strategy for inflammatory lung diseases.
Rationale: Asymptomatic relatives of patients with familial interstitial pneumonia (FIP), the inherited form of idiopathic interstitial pneumonia, carry increased risk for developing interstitial lung disease.Objectives: Studying these at-risk individuals provides a unique opportunity to investigate early stages of FIP pathogenesis and develop predictive models of disease onset.Methods: Seventy-five asymptomatic first-degree relatives of FIP patients (mean age, 50.8 yr) underwent blood sampling and highresolution chest computed tomography (HRCT) scanning in an ongoing cohort study; 72 consented to bronchoscopy with bronchoalveolar lavage (BAL) and transbronchial biopsies. Twenty-seven healthy individuals were used as control subjects.Measurements and Main Results: Eleven of 75 at-risk subjects (14%) had evidence of interstitial changes by HRCT, whereas 35.2% had abnormalities on transbronchial biopsies. No differences were noted in inflammatory cells in BAL between at-risk individuals and control subjects. At-risk subjects had increased herpesvirus DNA in cell-free BAL and evidence of herpesvirus antigen expression in alveolar epithelial cells (AECs), which correlated with expression of endoplasmic reticulum stress markers in AECs. Peripheral blood mononuclear cell and AEC telomere length were shorter in at-risk individuals than healthy control subjects. The minor allele frequency of the Muc5B rs35705950 promoter polymorphism was increased in at-risk subjects. Levels of several plasma biomarkers differed between at-risk subjects and control subjects, and correlated with abnormal HRCT scans.Conclusions: Evidence of lung parenchymal remodeling and epithelial dysfunction was identified in asymptomatic individuals at risk for FIP. Together, these findings offer new insights into the early pathogenesis of idiopathic interstitial pneumonia and provide an ongoing opportunity to characterize presymptomatic abnormalities that predict progression to clinical disease.
Characteristics of early and late effusions differ significantly, suggesting a different pathogenesis of the effusions. Patients who develop a symptomatic pleural effusion after CABG should undergo a therapeutic thoracentesis; however, further investigations are warranted only in patients who have pleural fluid characteristics different from those described.
NF-kB is a critical transcription factor for the production of many inflammatory cytokines. It is activated in the airway epithelium of human asthmatics and in mice after allergic stimulation. To examine the role of NF-kB activation in allergic inflammation we generated transgenic mouse lines that allowed for the inducible stimulation of NF-kB in airway epithelial cells. After allergic sensitization with ovalbumin and alum, mice were challenged daily with ovalbumin aerosols and NF-kB was activated in airway epithelium by administration of doxycycline. Enhancement of airway epithelial NF-kB expression alone did not lead to increased airway responsiveness to methacholine. However induction of epithelial NF-kB during allergic inflammation caused airway hyperresponsiveness, increased airway neutrophilic and lymphocytic inflammation and goblet cell hyperplasia. Accompanying the exaggerated inflammation was an increase in the cytokines, G-CSF, IL-15, and KC. Interestingly, the counter regulatory interleukin, IL-10, was suppressed by NF-kB activation. The epithelial NF-kB dependent modulation of these cytokines provides a plausible explanation for the increased inflammation seen with overexpression of NF-kB. Modulation of airway epithelial NF-kB activation enhances the airway hyperresponsiveness and mucus secretion found in the mouse lung during allergic inflammation. NF-kB represents a potential target for pharmacologic intervention in human asthma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.