Forecasting blood glucose (BG) values for patients can help prevent hypoglycemia and hyperglycemia events in advance. To this end, this study proposes an intelligent ensemble deep learning system to predict BG values in 15, 30, and 60 min prediction horizons (PHs) based on historical BG values collected via continuous glucose monitoring devices as an endogenous factor and carbohydrate intake and insulin administration information (times) as exogenous factors. Although there are numerous deep learning algorithms available, this study applied five algorithms, namely, recurrent neural network (RNN), which is optimized for sequence data (e.g., time-series), and RNN-based algorithms (e.g., long short-term memory (LSTM), stacked LSTM, bidirectional LSTM, and gated recurrent unit). Then, a genetic algorithm (GA) was applied to the five prediction models to optimize their weights through ensemble techniques and to yield (output) the final predicted BG values. The performance of the proposed model was compared to that of the autoregressive integrated moving average (ARIMA) model as a baseline. The results show that the proposed model significantly outperforms the baseline in terms of the root mean square error (RMSE) and continuous glucose error grid analysis. For the valid 29 diabetic patients for the multivariate models, the RMSE was 11.08 ( ± 3.19), 19.25 ( ± 5.28), and 31.30 ( ± 8.81) mg/DL for 15, 30, and 60 min PH, respectively. When the same data were applied to univariate models, the RMSE was 11.28 ( ± 3.34), 19.99 ( ± 5.59), and 33.13 ( ± 9.27) mg/DL for 15, 30, and 60 min PH, respectively. Both the univariate and multivariate models showed a statistically significant difference compared with the baseline at a 5% statistical significance level. Instead of using a model with a single algorithm, applying a GA based on each output of a model with multiple algorithms was found to play a significant role in improving model performance.
In this study, we propose a personalized glucose prediction model using deep learning for hospitalized patients who experience Type-2 diabetes. We aim for our model to assist the medical personnel who check the blood glucose and control the amount of insulin doses. Herein, we employed a deep learning algorithm, especially a recurrent neural network (RNN), that consists of a sequence processing layer and a classification layer for the glucose prediction. We tested a simple RNN, gated recurrent unit (GRU), and long-short term memory (LSTM) and varied the architectures to determine the one with the best performance. For that, we collected data for a week using a continuous glucose monitoring device. Type-2 inpatients are usually experiencing bad health conditions and have a high variability of glucose level. However, there are few studies on the Type-2 glucose prediction model while many studies performed on Type-1 glucose prediction. This work has a contribution in that the proposed model exhibits a comparative performance to previous works on Type-1 patients. For 20 in-hospital patients, we achieved an average root mean squared error (RMSE) of 21.5 and an Mean absolute percentage error (MAPE) of 11.1%. The GRU with a single RNN layer and two dense layers was found to be sufficient to predict the glucose level. Moreover, to build a personalized model, at most, 50% of data are required for training.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.