The fully-convolutional siamese network based on template matching has shown great potentials in visual tracking. During testing, the template is fixed with the initial target feature and the performance totally relies on the general matching ability of the siamese network. However, this manner cannot capture the temporal variations of targets or background clutter. In this work, we propose a novel gradient-guided network to exploit the discriminative information in gradients and update the template in the siamese network through feed-forward and backward operations. To be specific, the algorithm can utilize the information from the gradient to update the template in the current frame. In addition, a template generalization training method is proposed to better use gradient information and avoid overfitting. To our knowledge, this work is the first attempt to exploit the information in the gradient for template update in siamese-based trackers. Extensive experiments on recent benchmarks demonstrate that our method achieves better performance than other state-of-the-art trackers. The source codes are available at
Applying artificial intelligence techniques in medical imaging is one of the most promising areas in medicine. However, most of the recent success in this area highly relies on large amounts of carefully annotated data, whereas annotating medical images is a costly process. In this paper, we propose a novel method, called FocalMix, which, to the best of our knowledge, is the first to leverage recent advances in semi-supervised learning (SSL) for 3D medical image detection. We conducted extensive experiments on two widely used datasets for lung nodule detection, LUNA16 and NLST. Results show that our proposed SSL methods can achieve a substantial improvement of up to 17.3% over state-of-the-art supervised learning approaches with 400 unlabeled CT scans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.