The surprising properties of biomaterials are the results of billions of years of evolution. Generally, biomaterials are assembled under mild conditions with very limited supply of constituents available for living organism, and their amazing properties largely result from the sophisticated hierarchical structures. Following the biomimetic principles to prepare manmade materials has drawn great research interests in materials science and engineering. In this review, we summarize the recent progress in fabricating bioinspired materials with the emphasis on mimicking the structure from one to three dimensions. Selected examples are described with a focus on the relationship between the structural characters and the corresponding functions. For one-dimensional materials, spider fibers, polar bear hair, multichannel plant roots and so on have been involved. Natural structure color and color shifting surfaces, and the antifouling, antireflective coatings of biomaterials are chosen as the typical examples of the two-dimensional biomimicking. The outstanding protection performance, and the stimuli responsive and self-healing functions of biomaterials based on the sophisticated hierarchical bulk structures are the emphases of the three-dimensional mimicking. Finally, a summary and outlook are given.
Accumulating evidence revealed that dysregulated long non-coding RNAs (lncRNAs) were involved in tumorigenesis and progression. This study is supposed to reveal the effects of lncRNA PVT1 on the radiosensitivity of non-small-cell lung cancer (NSCLC) via the microRNA (miR)-424-5p/lncRNA PVT1/CARM1 signaling pathway. Differentially expressed lncRNA was filtrated. The co-expressed gene of lncRNA was predicted, and gene ontology analysis was performed to find out the genes associated with NSCLC radiosensitivity. The miR that was combined with lncRNA and mRNA was filtrated. Two cell lines with the highest expressed PVT1 were selected, followed by transfection with a series of different mimic, inhibitor, or siRNA. RIP assay was employed for the interaction between PVT1 and CARM1. The regulatory effect of miR-424-5p on cell proliferation, migration, invasion, cycle, and apoptosis was investigated. PVT1 was the most remarkable lncRNA that upregulated in NSCLC. CARM1 co-expressed with lncRNA PVT1 and associated with NSCLC radiosensitivity. Both lncRNA PVT1 and CARM1 can combine with miR-424-5p. Increased PVT1, CARM1, MMP-2, MMP-9, and Bcl-2 and decreased miR-424-5p and Bax were found in NSCLC tissues. PVT1 was targeted by miR-424-5p. After silencing of PVT1 or overexpressed miR-424-5p, decreased PVT1, CARM1, MMP-2, MMP-9, and Bcl-2 inhibited cell proliferation, migration, and invasion but promoted miR-424-5p, Bax, and cell apoptosis. The present study confirms the radiosensitivity of NSCLC radiotherapy can be increased by siRNA-PVT1 and overexpressed miR-424-5p.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.